Home > Publications database > Parallel adaptive Monte Carlo integration with the event generator WHIZARD > print |
001 | 422676 | ||
005 | 20250729162650.0 | ||
024 | 7 | _ | |a 10.1140/epjc/s10052-019-6840-2 |2 doi |
024 | 7 | _ | |a 0170-9739 |2 ISSN |
024 | 7 | _ | |a 1431-5858 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2019-02287 |2 datacite_doi |
024 | 7 | _ | |a arXiv:1811.09711 |2 arXiv |
024 | 7 | _ | |a altmetric:59114763 |2 altmetric |
024 | 7 | _ | |a WOS:000464902600002 |2 WOS |
024 | 7 | _ | |a inspire:1704950 |2 inspire |
024 | 7 | _ | |a openalex:W2901617736 |2 openalex |
037 | _ | _ | |a PUBDB-2019-02287 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | 1 | _ | |a arXiv:1811.09711; DESY-18-089; SI-HEP-2018-32 |
088 | _ | _ | |a arXiv:1811.09711 |2 arXiv |
088 | _ | _ | |a DESY-18-089 |2 DESY |
088 | _ | _ | |a SI-HEP-2018-32 |2 arXiv |
100 | 1 | _ | |a Brass, Simon |0 P:(DE-H253)PIP1081264 |b 0 |
245 | _ | _ | |a Parallel adaptive Monte Carlo integration with the event generator WHIZARD |
260 | _ | _ | |a Heidelberg |c 2019 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Report |0 PUB:(DE-HGF)29 |2 PUB:(DE-HGF) |m report |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1557993802_2700 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We describe a new parallel approach to the evaluation of phase space for Monte-Carlo event generation, implemented within the framework of the WHIZARD package. The program realizes a twofold self-adaptive multi-channel parameterization of phase space and makes use of the standard OpenMP and MPI protocols for parallelization. The modern MPI3 feature of asynchronous communication is an essential ingredient of the computing model. Parallel numerical evaluation applies both to phase-space integration and to event generation, thus covering the most computing-intensive parts of physics simulation for a realistic collider environment. |
536 | _ | _ | |0 G:(DE-HGF)POF3-611 |c POF3-611 |f POF III |x 0 |a 611 - Fundamental Particles and Forces (POF3-611) |
588 | _ | _ | |a Dataset connected to CrossRef |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Kilian, Wolfgang |b 1 |
700 | 1 | _ | |a Reuter, Jürgen |0 P:(DE-H253)PIP1013558 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1140/epjc/s10052-019-6840-2 |g Vol. 79, no. 4, p. 344 |0 PERI:(DE-600)1459069-4 |n 4 |p 344 |t The European physical journal / C |v 79 |y 2019 |x 1434-6044 |
787 | 0 | _ | |a Brass, Simon et.al. |d 2018 |i IsParent |0 PUBDB-2018-05561 |r arXiv:1811.09711; DESY-18-089; SI-HEP-2018-32 |t Parallel Adaptive Monte Carlo Integration with the Event Generator WHIZARD |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/422676/files/Brass2019_Article_ParallelAdaptiveMonteCarloInte.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://bib-pubdb1.desy.de/record/422676/files/Brass2019_Article_ParallelAdaptiveMonteCarloInte.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://bib-pubdb1.desy.de/record/422676/files/Brass2019_Article_ParallelAdaptiveMonteCarloInte.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://bib-pubdb1.desy.de/record/422676/files/Brass2019_Article_ParallelAdaptiveMonteCarloInte.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://bib-pubdb1.desy.de/record/422676/files/Brass2019_Article_ParallelAdaptiveMonteCarloInte.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/422676/files/Brass2019_Article_ParallelAdaptiveMonteCarloInte.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:422676 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Externes Institut |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1081264 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1013558 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Universum |1 G:(DE-HGF)POF3-610 |0 G:(DE-HGF)POF3-611 |2 G:(DE-HGF)POF3-600 |x 0 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR PHYS J C : 2017 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b EUR PHYS J C : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
920 | 1 | _ | |0 I:(DE-H253)T-20120731 |k T |l Theorie-Gruppe |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a report |
980 | _ | _ | |a I:(DE-H253)T-20120731 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|