000422002 001__ 422002
000422002 005__ 20250729162647.0
000422002 0247_ $$2doi$$a10.1016/j.jlumin.2019.03.031
000422002 0247_ $$2ISSN$$a0022-2313
000422002 0247_ $$2ISSN$$a1872-7883
000422002 0247_ $$2WOS$$aWOS:000467047000020
000422002 0247_ $$2altmetric$$aaltmetric:105568029
000422002 0247_ $$2openalex$$aopenalex:W2925158770
000422002 037__ $$aPUBDB-2019-02135
000422002 041__ $$aEnglish
000422002 082__ $$a530
000422002 1001_ $$0P:(DE-HGF)0$$aHizhnyi, Yu.$$b0
000422002 245__ $$aOrigin of luminescence in ZnMoO$_4$ crystals: Insights from spectroscopic studies and electronic structure calculations
000422002 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000422002 3367_ $$2DRIVER$$aarticle
000422002 3367_ $$2DataCite$$aOutput Types/Journal article
000422002 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1560292777_14868
000422002 3367_ $$2BibTeX$$aARTICLE
000422002 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000422002 3367_ $$00$$2EndNote$$aJournal Article
000422002 500__ $$a© Elsevier B.V.; Final published version in progress; Post referee fulltext in progress; Embargo 12 months from publication
000422002 520__ $$aA set of ZnMoO$_4$ polycrystalline samples was synthesized by solid state reaction method and characterized by XRD structural analysis, ICP elemental analysis, SEM-EDX analysis, UV–Vis diffuse reflectance spectroscopy. The photoluminescence (PL) properties of ZnMoO$_4$ samples were studied in 8–300 K temperature range with use of synchrotron radiation as an excitation source. The geometry-optimized electronic structure calculations of perfect and defective ZnMoO$_4$ crystals were carried out by the DFT-based band-structure methods, plane-wave pseudo-potential (CASTEP program package) and FP-LAPW (Wien2k package). A number of point defects which can influence the luminescence properties of ZnMoO$_4$ was considered in calculations, namely the oxygen vacancy V$_o$, compensated vacancies V$_o$ + V$_{Zn}$, tungsten impurity W$_{Mo}$ and the MoO$_3$-deficient phase Zn$_3$Mo$_2$O$_9$. Comparative analysis of experimental data and calculation results allowed explanation of the origin of the red and blue-green luminescence emission bands of ZnMoO$_4$ as well as formation of their excitation spectra. It is assumed that the green component of ZnMoO$_4$ luminescence emission, like in other molybdates of M$^{II}$MoO$_4$ family (M$^{II}$ = Ca, Sr, Cd, Pb) originates from radiative annihilation of excitons self-trapped on regular MoO$_4$ groups. The Red component of ZnMoO$_4$ emission has a defect-related origin and it originates from radiative transitions in MoO$_4$ groups located near oxygen vacancies.
000422002 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000422002 588__ $$aDataset connected to CrossRef
000422002 693__ $$0EXP:(DE-H253)D-I-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-I-20150101$$aDORIS III$$fDORIS Beamline I$$x0
000422002 7001_ $$0P:(DE-HGF)0$$aZatovsky, I.$$b1
000422002 7001_ $$0P:(DE-H253)PIP1008527$$aNedilko, S.$$b2
000422002 7001_ $$0P:(DE-HGF)0$$aBoiko, R.$$b3
000422002 7001_ $$0P:(DE-HGF)0$$aLi, Junzhi$$b4
000422002 7001_ $$0P:(DE-HGF)0$$aHan, Wei$$b5
000422002 7001_ $$0P:(DE-HGF)0$$aKlyui, N. I.$$b6$$eCorresponding author
000422002 773__ $$0PERI:(DE-600)1491401-3$$a10.1016/j.jlumin.2019.03.031$$gVol. 211, p. 127 - 137$$p127 - 137$$tJournal of luminescence$$v211$$x0022-2313$$y2019
000422002 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S0022231318323196
000422002 909CO $$ooai:bib-pubdb1.desy.de:422002$$pVDB
000422002 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008527$$aExternes Institut$$b2$$kExtern
000422002 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000422002 9141_ $$y2019
000422002 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000422002 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000422002 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ LUMIN : 2017
000422002 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000422002 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000422002 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000422002 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000422002 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000422002 915__ $$0StatID:(DE-HGF)0551$$2StatID$$aNo Fulltext
000422002 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000422002 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000422002 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000422002 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000422002 9201_ $$0I:(DE-H253)FS-DO-20120731$$kFS-DO$$lFS-Experimentebetreuung DORIS$$x0
000422002 980__ $$ajournal
000422002 980__ $$aVDB
000422002 980__ $$aUNRESTRICTED
000422002 980__ $$aI:(DE-H253)FS-DO-20120731