001     418293
005     20250729165740.0
024 7 _ |a 10.1039/C8CP02438C
|2 doi
024 7 _ |a 0956-5000
|2 ISSN
024 7 _ |a 1364-5455
|2 ISSN
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2019-00341
|2 datacite_doi
024 7 _ |a altmetric:46459999
|2 altmetric
024 7 _ |a pmid:30101953
|2 pmid
024 7 _ |a WOS:000443280900049
|2 WOS
024 7 _ |a openalex:W2886364804
|2 openalex
037 _ _ |a PUBDB-2019-00341
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-H253)PIP1008499
|a Capitán, Maria J.
|b 0
|e Corresponding author
245 _ _ |a Organometallic MTCNQ films: a comparative study of CuTCNQ versus AgTCNQ
260 _ _ |a Cambridge
|b Royal Soc. of Chemistry
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1547200639_15990
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a We performed a systematic study of electron-acceptor molecules in two closely related organometallicsolids, namely, CuTCNQ and AgTCNQ. These studies were performed using both an experimentalapproach,viathe use of electron spectroscopies (XPS and UPS), and a theoretical approach,viathe use ofab initioDFT calculations. From these results, a complete description of the electronic structure of thesemolecular solid-films could be given, identifying the characteristic electronic and structural features of eachpart of the molecules and their contribution to the final electronic structure. Empty states were found closeto the Fermi level in both solids. The presence of an electronic band close to the Fermi level is related tothe magnetic behavior predicted for both MTCNQ solids for their isolated monolayers. However, the lowerwork function of the MTCNQ with respect to the metal substrate one implies that the MTCNQ film acceptselectron from the metal substrate, thus fulfilling its Fermi level band. This occupied band explains theabsence of shake-up features in the core level spectra in opposition to the TCNQ. The UPS experimentsindicated that the MTCNQ film was doped by a small excess of metal from the substrate, shifting theelectron Fermi level close to the MTCNQ conduction band. Thus, the MTCNQ film becomes an n-typesemiconductor, opening up a very interesting field in the technological applications of this system.
536 _ _ |0 G:(DE-HGF)POF3-899
|a 899 - ohne Topic (POF3-899)
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |0 EXP:(DE-H253)D-W1-20150101
|1 EXP:(DE-H253)DORISIII-20150101
|6 EXP:(DE-H253)D-W1-20150101
|a DORIS III
|f DORIS Beamline W1
|x 0
700 1 _ |a Alvarez, Jesus
|b 1
700 1 _ |0 0000-0003-0968-4050
|a Yndurain, Felix
|b 2
773 _ _ |0 PERI:(DE-600)1476244-4
|a 10.1039/C8CP02438C
|g Vol. 20, no. 33, p. 21705 - 21715
|n 33
|p 21705 - 21715
|t Physical chemistry, chemical physics
|v 20
|x 1463-9084
|y 2018
856 4 _ |u https://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:418293
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-H253)PIP1008499
|a Externes Institut
|b 0
|k Extern
913 1 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS CHEM CHEM PHYS : 2017
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21