000418293 001__ 418293
000418293 005__ 20250729165740.0
000418293 0247_ $$2doi$$a10.1039/C8CP02438C
000418293 0247_ $$2ISSN$$a0956-5000
000418293 0247_ $$2ISSN$$a1364-5455
000418293 0247_ $$2ISSN$$a1463-9076
000418293 0247_ $$2ISSN$$a1463-9084
000418293 0247_ $$2datacite_doi$$a10.3204/PUBDB-2019-00341
000418293 0247_ $$2altmetric$$aaltmetric:46459999
000418293 0247_ $$2pmid$$apmid:30101953
000418293 0247_ $$2WOS$$aWOS:000443280900049
000418293 0247_ $$2openalex$$aopenalex:W2886364804
000418293 037__ $$aPUBDB-2019-00341
000418293 041__ $$aEnglish
000418293 082__ $$a540
000418293 1001_ $$0P:(DE-H253)PIP1008499$$aCapitán, Maria J.$$b0$$eCorresponding author
000418293 245__ $$aOrganometallic MTCNQ films: a comparative study of CuTCNQ versus AgTCNQ
000418293 260__ $$aCambridge$$bRoyal Soc. of Chemistry$$c2018
000418293 3367_ $$2DRIVER$$aarticle
000418293 3367_ $$2DataCite$$aOutput Types/Journal article
000418293 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547200639_15990
000418293 3367_ $$2BibTeX$$aARTICLE
000418293 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000418293 3367_ $$00$$2EndNote$$aJournal Article
000418293 520__ $$aWe performed a systematic study of electron-acceptor molecules in two closely related organometallicsolids, namely, CuTCNQ and AgTCNQ. These studies were performed using both an experimentalapproach,viathe use of electron spectroscopies (XPS and UPS), and a theoretical approach,viathe use ofab  initioDFT calculations. From these results, a complete description of the electronic structure of thesemolecular solid-films could be given, identifying the characteristic electronic and structural features of eachpart of the molecules and their contribution to the final electronic structure. Empty states were found closeto the Fermi level in both solids. The presence of an electronic band close to the Fermi level is related tothe magnetic behavior predicted for both MTCNQ solids for their isolated monolayers. However, the lowerwork function of the MTCNQ with respect to the metal substrate one implies that the MTCNQ film acceptselectron from the metal substrate, thus fulfilling its Fermi level band. This occupied band explains theabsence of shake-up features in the core level spectra in opposition to the TCNQ. The UPS experimentsindicated that the MTCNQ film was doped by a small excess of metal from the substrate, shifting theelectron Fermi level close to the MTCNQ conduction band. Thus, the MTCNQ film becomes an n-typesemiconductor, opening up a very interesting field in the technological applications of this system.
000418293 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000418293 588__ $$aDataset connected to CrossRef
000418293 693__ $$0EXP:(DE-H253)D-W1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-W1-20150101$$aDORIS III$$fDORIS Beamline W1$$x0
000418293 7001_ $$aAlvarez, Jesus$$b1
000418293 7001_ $$00000-0003-0968-4050$$aYndurain, Felix$$b2
000418293 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C8CP02438C$$gVol. 20, no. 33, p. 21705 - 21715$$n33$$p21705 - 21715$$tPhysical chemistry, chemical physics$$v20$$x1463-9084$$y2018
000418293 8564_ $$uhttps://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.pdf$$yOpenAccess
000418293 8564_ $$uhttps://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.gif?subformat=icon$$xicon$$yOpenAccess
000418293 8564_ $$uhttps://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000418293 8564_ $$uhttps://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000418293 8564_ $$uhttps://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000418293 8564_ $$uhttps://bib-pubdb1.desy.de/record/418293/files/c8cp02438c.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000418293 909CO $$ooai:bib-pubdb1.desy.de:418293$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000418293 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000418293 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000418293 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2017
000418293 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000418293 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000418293 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000418293 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000418293 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000418293 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000418293 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000418293 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000418293 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000418293 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000418293 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000418293 9141_ $$y2018
000418293 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008499$$aExternes Institut$$b0$$kExtern
000418293 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000418293 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000418293 980__ $$ajournal
000418293 980__ $$aVDB
000418293 980__ $$aUNRESTRICTED
000418293 980__ $$aI:(DE-H253)HAS-User-20120731
000418293 9801_ $$aFullTexts