001     418249
005     20250717101528.0
024 7 _ |a 10.1016/j.nima.2018.01.095
|2 doi
024 7 _ |a 0168-9002
|2 ISSN
024 7 _ |a 1872-9576
|2 ISSN
024 7 _ |a arXiv:1801.10373
|2 arXiv
024 7 _ |a altmetric:32491024
|2 altmetric
024 7 _ |a 10.3204/PUBDB-2019-00297
|2 datacite_doi
024 7 _ |a WOS:000451748000046
|2 WOS
024 7 _ |a inspire:1651516
|2 inspire
024 7 _ |a openalex:W2786309904
|2 openalex
037 _ _ |a PUBDB-2019-00297
041 _ _ |a English
082 _ _ |a 530
088 1 _ |a arXiv:1801.10373
088 _ _ |a arXiv:1801.10373
|2 arXiv
100 1 _ |a Mayet, F.
|0 P:(DE-H253)PIP1014786
|b 0
|e Corresponding author
245 _ _ |a Using Short Drive Laser Pulses to Achieve Net Focusing Forces in Tailored Dual Grating Dielectric Structures
260 _ _ |a Amsterdam
|c 2018
|b North-Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Report
|0 PUB:(DE-HGF)29
|2 PUB:(DE-HGF)
|m report
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1549491650_30539
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a © Elsevier B.V.
520 _ _ |a Laser-driven grating type DLA (Dielectric Laser Accelerator) structures have been shown to produce accelerating gradients on the order of GeV/m. In simple $\beta$-matched grating structures due to the nature of the laser induced steady-state in-channel fields the per period forces on the particles are mostly in longitudinal direction. Even though strong transverse magnetic and electric fields are present, the net focusing effect over one period at maximum energy gain is negligible in the case of relativistic electrons. Stable acceleration of realistic electron beams in a DLA channel however requires the presence of significant net transverse forces. In this work we simulate and study the effect of using the transient temporal shape of short Gaussian drive laser pulses in order to achieve suitable field configurations for potentially stable acceleration of relativistic electrons in the horizontal plane. In order to achieve this, both the laser pulse and the grating geometry are optimized. Simulations conducted with the Particle-In-Cell code VSim 7.2 are shown for both the transient and steady state/long pulse case. Finally we investigate how the drive laser phase dependence of the focusing forces could affect a potential DLA-based focusing lattice.
536 _ _ |a 631 - Accelerator R & D (POF3-631)
|0 G:(DE-HGF)POF3-631
|c POF3-631
|f POF III
|x 0
536 _ _ |a ACHIP - Laser Accelerators on a Chip (ACHIP_2015-10-01)
|0 G:(DE-HGF)ACHIP_2015-10-01
|c ACHIP_2015-10-01
|x 1
588 _ _ |a Dataset connected to CrossRef
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Assmann, R.
|0 P:(DE-H253)PIP1017739
|b 1
700 1 _ |a Dorda, U.
|0 P:(DE-H253)PIP1021881
|b 2
700 1 _ |a Kuropka, W.
|0 P:(DE-H253)PIP1030512
|b 3
773 _ _ |a 10.1016/j.nima.2018.01.095
|g Vol. 909, p. 208 - 212
|0 PERI:(DE-600)1466532-3
|p 208 - 212
|t Nuclear instruments & methods in physics research / A
|v 909
|y 2018
|x 0168-9002
787 0 _ |a Mayet, Frank et.al.
|d 2018
|i IsMemberOf
|0 PUBDB-2018-03614
|r arXiv:1801.10373
|t Using short drive laser pulses to achieve net focusing forces in tailored dual grating dielectric structures
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.pdf
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|x icon
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.gif?subformat=icon
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|x icon-1440
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.jpg?subformat=icon-1440
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|x icon-180
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.jpg?subformat=icon-180
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|x icon-640
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.jpg?subformat=icon-640
856 4 _ |y Restricted
|x icon
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.gif?subformat=icon
856 4 _ |y Restricted
|x icon-1440
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.jpg?subformat=icon-1440
856 4 _ |y Restricted
|x icon-180
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.jpg?subformat=icon-180
856 4 _ |y Restricted
|x icon-640
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.jpg?subformat=icon-640
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:418249
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1014786
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1017739
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1021881
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1030512
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-631
|2 G:(DE-HGF)POF3-600
|v Accelerator R & D
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL INSTRUM METH A : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-H253)MPY1-20170908
|k MPY1
|l Beschleunigerphysik Fachgruppe MPY1
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a report
980 _ _ |a I:(DE-H253)MPY1-20170908
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21