Home > Publications database > Using Short Drive Laser Pulses to Achieve Net Focusing Forces in Tailored Dual Grating Dielectric Structures > print |
001 | 418249 | ||
005 | 20250717101528.0 | ||
024 | 7 | _ | |a 10.1016/j.nima.2018.01.095 |2 doi |
024 | 7 | _ | |a 0168-9002 |2 ISSN |
024 | 7 | _ | |a 1872-9576 |2 ISSN |
024 | 7 | _ | |a arXiv:1801.10373 |2 arXiv |
024 | 7 | _ | |a altmetric:32491024 |2 altmetric |
024 | 7 | _ | |a 10.3204/PUBDB-2019-00297 |2 datacite_doi |
024 | 7 | _ | |a WOS:000451748000046 |2 WOS |
024 | 7 | _ | |a inspire:1651516 |2 inspire |
024 | 7 | _ | |a openalex:W2786309904 |2 openalex |
037 | _ | _ | |a PUBDB-2019-00297 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | 1 | _ | |a arXiv:1801.10373 |
088 | _ | _ | |a arXiv:1801.10373 |2 arXiv |
100 | 1 | _ | |a Mayet, F. |0 P:(DE-H253)PIP1014786 |b 0 |e Corresponding author |
245 | _ | _ | |a Using Short Drive Laser Pulses to Achieve Net Focusing Forces in Tailored Dual Grating Dielectric Structures |
260 | _ | _ | |a Amsterdam |c 2018 |b North-Holland Publ. Co. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Report |0 PUB:(DE-HGF)29 |2 PUB:(DE-HGF) |m report |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1549491650_30539 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a © Elsevier B.V. |
520 | _ | _ | |a Laser-driven grating type DLA (Dielectric Laser Accelerator) structures have been shown to produce accelerating gradients on the order of GeV/m. In simple $\beta$-matched grating structures due to the nature of the laser induced steady-state in-channel fields the per period forces on the particles are mostly in longitudinal direction. Even though strong transverse magnetic and electric fields are present, the net focusing effect over one period at maximum energy gain is negligible in the case of relativistic electrons. Stable acceleration of realistic electron beams in a DLA channel however requires the presence of significant net transverse forces. In this work we simulate and study the effect of using the transient temporal shape of short Gaussian drive laser pulses in order to achieve suitable field configurations for potentially stable acceleration of relativistic electrons in the horizontal plane. In order to achieve this, both the laser pulse and the grating geometry are optimized. Simulations conducted with the Particle-In-Cell code VSim 7.2 are shown for both the transient and steady state/long pulse case. Finally we investigate how the drive laser phase dependence of the focusing forces could affect a potential DLA-based focusing lattice. |
536 | _ | _ | |a 631 - Accelerator R & D (POF3-631) |0 G:(DE-HGF)POF3-631 |c POF3-631 |f POF III |x 0 |
536 | _ | _ | |a ACHIP - Laser Accelerators on a Chip (ACHIP_2015-10-01) |0 G:(DE-HGF)ACHIP_2015-10-01 |c ACHIP_2015-10-01 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Assmann, R. |0 P:(DE-H253)PIP1017739 |b 1 |
700 | 1 | _ | |a Dorda, U. |0 P:(DE-H253)PIP1021881 |b 2 |
700 | 1 | _ | |a Kuropka, W. |0 P:(DE-H253)PIP1030512 |b 3 |
773 | _ | _ | |a 10.1016/j.nima.2018.01.095 |g Vol. 909, p. 208 - 212 |0 PERI:(DE-600)1466532-3 |p 208 - 212 |t Nuclear instruments & methods in physics research / A |v 909 |y 2018 |x 0168-9002 |
787 | 0 | _ | |a Mayet, Frank et.al. |d 2018 |i IsMemberOf |0 PUBDB-2018-03614 |r arXiv:1801.10373 |t Using short drive laser pulses to achieve net focusing forces in tailored dual grating dielectric structures |
856 | 4 | _ | |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02. |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.pdf |
856 | 4 | _ | |y Restricted |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.pdf |
856 | 4 | _ | |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02. |x icon |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.gif?subformat=icon |
856 | 4 | _ | |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02. |x icon-1440 |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.jpg?subformat=icon-1440 |
856 | 4 | _ | |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02. |x icon-180 |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.jpg?subformat=icon-180 |
856 | 4 | _ | |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02. |x icon-640 |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/418249/files/1801.10373.jpg?subformat=icon-640 |
856 | 4 | _ | |y Restricted |x icon |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.gif?subformat=icon |
856 | 4 | _ | |y Restricted |x icon-1440 |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.jpg?subformat=icon-1440 |
856 | 4 | _ | |y Restricted |x icon-180 |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.jpg?subformat=icon-180 |
856 | 4 | _ | |y Restricted |x icon-640 |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.jpg?subformat=icon-640 |
856 | 4 | _ | |y Restricted |x pdfa |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:418249 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Externes Institut |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1014786 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1017739 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1021881 |
910 | 1 | _ | |a Externes Institut |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1030512 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF3-630 |0 G:(DE-HGF)POF3-631 |2 G:(DE-HGF)POF3-600 |v Accelerator R & D |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL INSTRUM METH A : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-H253)MPY1-20170908 |k MPY1 |l Beschleunigerphysik Fachgruppe MPY1 |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a report |
980 | _ | _ | |a I:(DE-H253)MPY1-20170908 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|