000418249 001__ 418249
000418249 005__ 20250717101528.0
000418249 0247_ $$2doi$$a10.1016/j.nima.2018.01.095
000418249 0247_ $$2ISSN$$a0168-9002
000418249 0247_ $$2ISSN$$a1872-9576
000418249 0247_ $$2arXiv$$aarXiv:1801.10373
000418249 0247_ $$2altmetric$$aaltmetric:32491024
000418249 0247_ $$2datacite_doi$$a10.3204/PUBDB-2019-00297
000418249 0247_ $$2WOS$$aWOS:000451748000046
000418249 0247_ $$2inspire$$ainspire:1651516
000418249 0247_ $$2openalex$$aopenalex:W2786309904
000418249 037__ $$aPUBDB-2019-00297
000418249 041__ $$aEnglish
000418249 082__ $$a530
000418249 0881_ $$aarXiv:1801.10373
000418249 088__ $$2arXiv$$aarXiv:1801.10373
000418249 1001_ $$0P:(DE-H253)PIP1014786$$aMayet, F.$$b0$$eCorresponding author
000418249 245__ $$aUsing Short Drive Laser Pulses to Achieve Net Focusing Forces in Tailored Dual Grating Dielectric Structures
000418249 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2018
000418249 3367_ $$2DRIVER$$aarticle
000418249 3367_ $$2DataCite$$aOutput Types/Journal article
000418249 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport
000418249 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1549491650_30539
000418249 3367_ $$2BibTeX$$aARTICLE
000418249 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000418249 3367_ $$00$$2EndNote$$aJournal Article
000418249 500__ $$a© Elsevier B.V.
000418249 520__ $$aLaser-driven grating type DLA (Dielectric Laser Accelerator) structures have been shown to produce accelerating gradients on the order of GeV/m. In simple $\beta$-matched grating structures due to the nature of the laser induced steady-state in-channel fields the per period forces on the particles are mostly in longitudinal direction. Even though strong transverse magnetic and electric fields are present, the net focusing effect over one period at maximum energy gain is negligible in the case of relativistic electrons. Stable acceleration of realistic electron beams in a DLA channel however requires the presence of significant net transverse forces. In this work we simulate and study the effect of using the transient temporal shape of short Gaussian drive laser pulses in order to achieve suitable field configurations for potentially stable acceleration of relativistic electrons in the horizontal plane. In order to achieve this, both the laser pulse and the grating geometry are optimized. Simulations conducted with the Particle-In-Cell code VSim 7.2 are shown for both the transient and steady state/long pulse case. Finally we investigate how the drive laser phase dependence of the focusing forces could affect a potential DLA-based focusing lattice.
000418249 536__ $$0G:(DE-HGF)POF3-631$$a631 - Accelerator R & D (POF3-631)$$cPOF3-631$$fPOF III$$x0
000418249 536__ $$0G:(DE-HGF)ACHIP_2015-10-01$$aACHIP - Laser Accelerators on a Chip (ACHIP_2015-10-01)$$cACHIP_2015-10-01$$x1
000418249 588__ $$aDataset connected to CrossRef
000418249 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000418249 7001_ $$0P:(DE-H253)PIP1017739$$aAssmann, R.$$b1
000418249 7001_ $$0P:(DE-H253)PIP1021881$$aDorda, U.$$b2
000418249 7001_ $$0P:(DE-H253)PIP1030512$$aKuropka, W.$$b3
000418249 773__ $$0PERI:(DE-600)1466532-3$$a10.1016/j.nima.2018.01.095$$gVol. 909, p. 208 - 212$$p208 - 212$$tNuclear instruments & methods in physics research / A$$v909$$x0168-9002$$y2018
000418249 7870_ $$0PUBDB-2018-03614$$aMayet, Frank et.al.$$d2018$$iIsMemberOf$$rarXiv:1801.10373$$tUsing short drive laser pulses to achieve net focusing forces in tailored dual grating dielectric structures
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/1801.10373.pdf$$yPublished on 2018-02-02. Available in OpenAccess from 2019-02-02.$$zStatID:(DE-HGF)0510
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/1801.10373.gif?subformat=icon$$xicon$$yPublished on 2018-02-02. Available in OpenAccess from 2019-02-02.$$zStatID:(DE-HGF)0510
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/1801.10373.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2018-02-02. Available in OpenAccess from 2019-02-02.$$zStatID:(DE-HGF)0510
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/1801.10373.jpg?subformat=icon-180$$xicon-180$$yPublished on 2018-02-02. Available in OpenAccess from 2019-02-02.$$zStatID:(DE-HGF)0510
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/1801.10373.jpg?subformat=icon-640$$xicon-640$$yPublished on 2018-02-02. Available in OpenAccess from 2019-02-02.$$zStatID:(DE-HGF)0510
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.gif?subformat=icon$$xicon$$yRestricted$$zStatID:(DE-HGF)0599
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.jpg?subformat=icon-1440$$xicon-1440$$yRestricted$$zStatID:(DE-HGF)0599
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.jpg?subformat=icon-180$$xicon-180$$yRestricted$$zStatID:(DE-HGF)0599
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.jpg?subformat=icon-640$$xicon-640$$yRestricted$$zStatID:(DE-HGF)0599
000418249 8564_ $$uhttps://bib-pubdb1.desy.de/record/418249/files/10.1016_j.nima.2018.01.095.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000418249 909CO $$ooai:bib-pubdb1.desy.de:418249$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000418249 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014786$$aExternes Institut$$b0$$kExtern
000418249 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1017739$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000418249 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021881$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000418249 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030512$$aExternes Institut$$b3$$kExtern
000418249 9131_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x0
000418249 9141_ $$y2018
000418249 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000418249 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000418249 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000418249 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000418249 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL INSTRUM METH A : 2017
000418249 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000418249 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000418249 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000418249 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000418249 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000418249 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000418249 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000418249 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000418249 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000418249 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000418249 9201_ $$0I:(DE-H253)MPY1-20170908$$kMPY1$$lBeschleunigerphysik Fachgruppe MPY1$$x0
000418249 980__ $$ajournal
000418249 980__ $$aVDB
000418249 980__ $$aUNRESTRICTED
000418249 980__ $$areport
000418249 980__ $$aI:(DE-H253)MPY1-20170908
000418249 9801_ $$aFullTexts