000413911 001__ 413911
000413911 005__ 20250729164733.0
000413911 0247_ $$2doi$$a10.1021/acs.cgd.7b01295
000413911 0247_ $$2ISSN$$a1528-7483
000413911 0247_ $$2ISSN$$a1528-7505
000413911 0247_ $$2altmetric$$aaltmetric:32476460
000413911 0247_ $$2WOS$$aWOS:000427203700018
000413911 0247_ $$2openalex$$aopenalex:W2785013103
000413911 037__ $$aPUBDB-2018-03799
000413911 041__ $$aEnglish
000413911 082__ $$a540
000413911 1001_ $$0P:(DE-H253)PIP1014100$$aDey, Somnath$$b0
000413911 245__ $$aRole of Steric Hindrance in the Crystal Packing of Z ′ = 4 Superstructure of Trimethyltin Hydroxide
000413911 260__ $$aWashington, DC$$bACS Publ.$$c2018
000413911 3367_ $$2DRIVER$$aarticle
000413911 3367_ $$2DataCite$$aOutput Types/Journal article
000413911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1545599388_6330
000413911 3367_ $$2BibTeX$$aARTICLE
000413911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000413911 3367_ $$00$$2EndNote$$aJournal Article
000413911 500__ $$a© American Chemical Society; Post referee fulltext in progress; Embargo 12 months from publication
000413911 520__ $$aThe room-temperature crystal structure of trimethyltin hydroxide, (CH$_3$)$_3$SnOH, has been described by Anderson et al. [Cryst. Growth Des. 2011, 11, 820–826] as a 2a × 2b × 8c, 32-fold superstructure. We report a a × b × 8c, eight-fold superstructure with orthorhombic P2$_1$cn symmetry and Z′ = 4. Structured diffuse scattering observed at the positions of presumed superlattice reflections along a* and b* might have appeared as Bragg reflections in the experiment by Anderson et al. Alternatively, Anderson et al. and the present work might have studied different polymorphs of (CH$_3$)$_3$SnOH. Crystalline (CH$_3$)$_3$SnOH constitutes polymeric chains arranged parallel to c. In the eight-fold superstructure at 220 K, the polymeric chains possess a distorted zigzag arrangement of linked linear O–Sn–O units with bent angle at oxygen of ∼139.2°. This structure is essentially different from the 8$_3$-helical arrangement in the published 32-fold superstructure model. The origin of the distorted zigzag structure is explained by steric hindrance between hydrogen atoms of adjacent hydroxy groups and (CH$_3$)$_3$Sn groups. Frustration in the packing of the chains is determined by steric hindrance between methyl groups of neighboring chains, which prevents the formation of interchain C–H···O hydrogen bonds.
000413911 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000413911 536__ $$0G:(DE-H253)I-20110939$$aFS-Proposal: I-20110939 (I-20110939)$$cI-20110939$$x1
000413911 588__ $$aDataset connected to CrossRef
000413911 693__ $$0EXP:(DE-H253)D-F1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-F1-20150101$$aDORIS III$$fDORIS Beamline F1$$x0
000413911 7001_ $$0P:(DE-H253)PIP1008632$$aSchoenleber, Andreas$$b1$$eCorresponding author
000413911 7001_ $$0P:(DE-HGF)0$$aMondal, S.$$b2
000413911 7001_ $$0P:(DE-HGF)0$$aAli, S. I.$$b3
000413911 7001_ $$0P:(DE-HGF)0$$avan Smaalen, S.$$b4$$eCorresponding author
000413911 773__ $$0PERI:(DE-600)2048329-6$$a10.1021/acs.cgd.7b01295$$gVol. 18, no. 3, p. 1394 - 1400$$n3$$p1394 - 1400$$tCrystal growth & design$$v18$$x1528-7505$$y2018
000413911 8564_ $$uhttps://bib-pubdb1.desy.de/record/413911/files/acs.cgd.7b01295.pdf$$yRestricted
000413911 8564_ $$uhttps://bib-pubdb1.desy.de/record/413911/files/acs.cgd.7b01295.gif?subformat=icon$$xicon$$yRestricted
000413911 8564_ $$uhttps://bib-pubdb1.desy.de/record/413911/files/acs.cgd.7b01295.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000413911 8564_ $$uhttps://bib-pubdb1.desy.de/record/413911/files/acs.cgd.7b01295.jpg?subformat=icon-180$$xicon-180$$yRestricted
000413911 8564_ $$uhttps://bib-pubdb1.desy.de/record/413911/files/acs.cgd.7b01295.jpg?subformat=icon-640$$xicon-640$$yRestricted
000413911 8564_ $$uhttps://bib-pubdb1.desy.de/record/413911/files/acs.cgd.7b01295.pdf?subformat=pdfa$$xpdfa$$yRestricted
000413911 909CO $$ooai:bib-pubdb1.desy.de:413911$$pVDB
000413911 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014100$$aExternes Institut$$b0$$kExtern
000413911 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014100$$a Universität Bayreuth$$b0
000413911 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008632$$a Universität Bayreuth$$b1
000413911 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000413911 9141_ $$y2018
000413911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000413911 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000413911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYST GROWTH DES : 2017
000413911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000413911 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000413911 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000413911 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000413911 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000413911 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000413911 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000413911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000413911 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000413911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000413911 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000413911 980__ $$ajournal
000413911 980__ $$aVDB
000413911 980__ $$aUNRESTRICTED
000413911 980__ $$aI:(DE-H253)HAS-User-20120731