% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Abdalla:411434,
author = {Abdalla, H. and Aharonian, F. and Ait Benkhali, F. and
Angüner, E. O. and Arakawa, M. and Arcaro, C. and Armand,
C. and Arrieta, M. and Backes, M. and Barnard, M. and
Becherini, Y. and Becker Tjus, J. and Berge, D. and
Bernhard, S. and Bernlöhr, K. and Blackwell, R. and
Böttcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy,
S. and Bordas, P. and Bregeon, J. and Brun, F. and Brun, P.
and Bryan, M. and Büchele, M. and Bulik, T. and Bylund, T.
and Capasso, M. and Caroff, S. and Carosi, A. and Casanova,
S. and Cerruti, M. and Chakraborty, N. and Chandra, S. and
Chaves, R. C. G. and Chen, A. and Colafrancesco, S. and
Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and
deWilt, P. and Dirson, L. and Djannati-Ataï, A. and
Dmytriiev, A. and Donath, A. and Drury, L. O’C. and Dyks,
J. and Egberts, K. and Emery, G. and Ernenwein, J.-P. and
Eschbach, S. and Fegan, S. and Fiasson, A. and Fontaine, G.
and Funk, S. and Füßling, M. and Gabici, S. and Gallant,
Y. A. and Garrigoux, T. and Gaté, F. and Giavitto, G. and
Glawion, D. and Glicenstein, J. F. and Gottschall, D. and
Grondin, M.-H. and Hahn, J. and Haupt, M. and Heinzelmann,
G. and Henri, G. and Hermann, G. and Hinton, J. A. and
Hofmann, W. and Hoischen, C. and Holch, T. L. and Holler, M.
and Horns, D. and Huber, D. and Iwasaki, H. and
Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and
Jankowsky, F. and Jouvin, L. and Jung-Richardt, I. and
Kastendieck, M. A. and Katarzy´nski, K. and Katsuragawa, M.
and Katz, U. and Kerszberg, D. and Khangulyan, D. and
Khélifi, B. and King, J. and Klepser, S. and Klu´zniak, W.
and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M.
and Krüger, P. P. and Lamanna, G. and Lau, J. and
Lefaucheur, J. and Lemière, A. and Lemoine-Goumard, M. and
Lenain, J.-P. and Leser, E. and Lohse, T. and Lorentz, M.
and López-Coto, R. and Lypova, I. and Malyshev, D. and
Marandon, V. and Marcowith, A. and Mariaud, C. and
Martí-Devesa, G. and Marx, R. and Maurin, G. and Meintjes,
P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed,
M. and Mohrmann, L. and Moulin, E. and Murach, T. and
Nakashima, S. and de Naurois, M. and Ndiyavala, H. and
Niederwanger, F. and Niemiec, J. and Oakes, L. and
O’Brien, P. and Odaka, H. and Ohm, S. and Ostrowski, M.
and Oya, I. and Padovani, M. and Panter, M. and Parsons, R.
D. and Perennes, C. and Petrucci, P.-O. and Peyaud, B. and
Piel, Q. and Pita, S. and Poireau, V. and Priyana Noel, A.
and Prokhorov, D. A. and Prokoph, H. and Pühlhofer, G. and
Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and
Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and
Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B.
and Ruiz-Velasco, E. and Sahakian, V. and Saito, S. and
Sanchez, D. A. and Santangelo, A. and Sasaki, M. and
Schlickeiser, R. and Schüssler, F. and Schulz, Anneli and
Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and
Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon,
I. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and
Sol, H. and Spanier, F. and Specovius, A. and Spir-Jacob, M.
and Stawarz, Ł. and Steenkamp, R. and Stegmann, C. and
Steppa, C. and Sushch, I. and Takahashi, T. and Tavernet,
J.-P. and Tavernier, T. and Taylor, A. M. and Terrier, R.
and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and
Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and
Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and
van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and
Veh, J. and Venter, C. and Viana, A. and Vincent, P. and
Vink, J. and Voisin, F. and Völk, H. J. and Vuillaume, T.
and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and
Wagner, R. M. and White, R. and Wierzcholska, A. and
Wörnlein, A. and Yang, R. and Zaborov, D. and Zacharias, M.
and Zanin, R. and Zdziarski, A. A. and Zech, A. and Zefi, F.
and Ziegler, A. and Zorn, J. and Żywucka, N. and H. E. S.
S.{ Collaboration}},
title = {{T}he starburst galaxy {NGC} 253 revisited by
{H}.{E}.{S}.{S}. and {F}ermi-{LAT}},
journal = {Astronomy and astrophysics},
volume = {617},
issn = {1432-0746},
address = {Les Ulis},
publisher = {EDP Sciences},
reportid = {PUBDB-2018-03715, arXiv:1806.03866},
pages = {A73},
year = {2018},
note = {(c) ESO},
abstract = {Context. NGC 253 is one of only two starburst galaxies
found to emit $\gamma$-rays from hundreds of MeV to
multi-TeV energies. Accurate measurements of the
very-high-energy (VHE; E > 100 GeV) and high-energy (HE; E >
60 MeV) spectra are crucial to study the underlying particle
accelerators, probe the dominant emission mechanism(s) and
to study cosmic-ray interaction and transport. Aims. The
measurement of the VHE $\gamma$-ray emission of NGC 253
published in 2012 by H.E.S.S. was limited by large
systematic uncertainties. Here, the most up to date
measurement of the $\gamma$-ray spectrum of NGC 253 is
investigated in both HE and VHE $\gamma$-rays. Assuming a
hadronic originof the $\gamma$-ray emission, the measurement
uncertainties are propagated into the interpretation of the
accelerated particle population. Methods. The data of
H.E.S.S. observations are reanalysed using an updated
calibration and analysis chain. The improved Fermi−LAT
analysis employs more than 8 yr of data processed using pass
8. The cosmic-ray particle population is evaluated from the
combined HE–VHE $\gamma$-ray spectrum using NAIMA in the
optically thin case. Results. The VHE $\gamma$-ray energy
spectrum is best fit by a power-law distribution with a flux
normalisation of (1.34 ± 0.14$^{stat}$ ±
0.27$^{sys}$)×$10^{−13} cm^{−2} s^{−1} TeV^{−1}$ at
1 TeV – about 40\% above, but compatible with the value
obtained in Abramowski et al. (2012). The spectral index
$\Gamma = 2.39 ± 0.14^{stat} ± 0.25^{sys}$ is slightly
softer than but consistent with the previous measurement
within systematic errors. In the Fermi energy range an
integral flux of F(E > 60 MeV) = (1.56 ± 0.28$^{stat}$ ±
0.15$^{sys}$) ×$10^{−8} cm^{−2} s^{−1}$ is obtained.
At energies above ∼3 GeV the HE spectrum is consistent
with a power-law ranging into the VHE part of the spectrum
measured by H.E.S.S. with an overall spectral index $\Gamma
= 2.22 ± 0.06^{stat}$. Conclusions. Two scenarios for the
starburst nucleus are tested, in which the gas in the
starburst nucleus acts as either a thin or a thick target
for hadronic cosmic rays accelerated by the individual
sources in the nucleus. In these two models, the level to
which NGC 253 acts as a calorimeter is estimated to a range
of $f_{cal}$ = 0.1 to 1 while accounting for the measurement
uncertainties. The presented spectrum is likely to remain
the mostaccurate measurements until the Cherenkov Telescope
Array (CTA) has collected a substantial set of data towards
NGC 253.},
cin = {ZEU-HESS},
ddc = {520},
cid = {I:(DE-H253)ZEU-HESS-20140213},
pnm = {613 - Matter and Radiation from the Universe (POF3-613)},
pid = {G:(DE-HGF)POF3-613},
experiment = {EXP:(DE-H253)HESS-20170101 / EXP:(DE-H253)Fermi-20170101},
typ = {PUB:(DE-HGF)29 / PUB:(DE-HGF)16},
eprint = {1806.03866},
howpublished = {arXiv:1806.03866},
archivePrefix = {arXiv},
SLACcitation = {$\%\%CITATION$ = $arXiv:1806.03866;\%\%$},
UT = {WOS:000445045400001},
doi = {10.1051/0004-6361/201833202},
url = {https://bib-pubdb1.desy.de/record/411434},
}