000408109 001__ 408109
000408109 005__ 20231107210721.0
000408109 0247_ $$2datacite_doi$$a10.3204/PUBDB-2018-02673
000408109 037__ $$aPUBDB-2018-02673
000408109 041__ $$aEnglish
000408109 088__ $$2DESY$$aDESY-THESIS-2018-027
000408109 0881_ $$aDESY-THESIS-2018-027
000408109 1001_ $$0P:(DE-H253)PIP1011856$$aKononenko, Olena$$b0$$eCorresponding author$$gfemale
000408109 245__ $$aControlled injection into a Laser-driven wakefield accelerator$$f2013-08-01 - 2018-05-24
000408109 260__ $$aHamburg$$bVerlag Deutsches Elektronen-Synchrotron$$c2018
000408109 300__ $$a179
000408109 3367_ $$2DataCite$$aOutput Types/Dissertation
000408109 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000408109 3367_ $$2ORCID$$aDISSERTATION
000408109 3367_ $$2BibTeX$$aPHDTHESIS
000408109 3367_ $$02$$2EndNote$$aThesis
000408109 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1699365650_341805
000408109 3367_ $$2DRIVER$$adoctoralThesis
000408109 4900_ $$aDESY-THESIS
000408109 502__ $$aDissertation, Universität Hamburg, 2018$$bDissertation$$cUniversität Hamburg$$d2018
000408109 520__ $$aThis thesis explores laser-driven plasma-wakefield acceleration using two different high-power,ultrashort titanium-doped sapphire lasers. The first experiment was performed at the CentralLaser Facility in the Rutherford Appleton Laboratory using the petawatt class Astra GEMINIlaser, focused by an F/40 focusing optic, and a two-stage, variable-length (< 42mm) gas targetfilled with a gas mixture to generate electron beams with charge greater 100 pC and accelerateto above 1 GeV. In this work, two-dimensional (2D) hydrodynamic simulations were performed, using the opensource fluid code OpenFOAM, to simulate the plasma-density distribution and study possiblesources of instability and unwanted effects occuring during the electron injection and acceleration,which might be adjusted in future by improvement of the plasma target design. Experimentaldata describing the properties of the electron bunch obtained with the variable-length target,have been analysed with respect to the properties of the target, including aperture diameter andinlet pressure. Plasma density modulations along the laser propagation axis lead to plasma-waketransverse oscillations and are expected to negatively impact stability.The other experiment was performed in the BOND laboratory at DESY, utilising the new 25 TW, 25 fs, Ti:Sa laser, which is focused by an F/14 off-axis parabolic mirror (OAP), onto a gastarget, reaching a peak intensity of 10$^{19}$W/cm$^{2}(a_{0}\simeq$ 2:2). Using either a gas capillary target ora supersonic gas jet, electrons were accelerated up to energies exceeding 100 MeV. These beamsexhibit a wide range of different charges. A cavity-based charge diagnostic, named DaMon,which has much better sensitivity than commercially available integrated current transformers,was tested.Simultaneous use of the DaMon together with a scintillating screen allowed estimates ofbunch charge, and showed that the sensitivity of the DaMon to beam position was negligible.Results from experiments with a 10 mm gas cell demonstrated detection of 25 $\pm$ 9 fC electronbunches, which is the lowest charge reported at the exit of a plasma wakefield accelerator. Acomparison of the electron-beam charge measured by the DaMon and the electron spectrometerdemonstrated that the DaMon has a significant advantage in acceptance angle compared to thatof the electron spectrometer, which is of crucial importance for a total charge measurement.
000408109 536__ $$0G:(DE-HGF)POF3-631$$a631 - Accelerator R & D (POF3-631)$$cPOF3-631$$fPOF III$$x0
000408109 536__ $$0G:(DE-HGF)2015_IFV-VH-VI-503$$aVH-VI-503 - Plasma wakefield acceleration of highly relativistic electrons with FLASH (2015_IFV-VH-VI-503)$$c2015_IFV-VH-VI-503$$x1
000408109 536__ $$0G:(DE-HGF)2015_IFV-VH-GS-500$$aPHGS, VH-GS-500 - PIER Helmholtz Graduate School (2015_IFV-VH-GS-500)$$c2015_IFV-VH-GS-500$$x2
000408109 693__ $$0EXP:(DE-H253)FLASHForward-20150101$$1EXP:(DE-H253)FLASH-20150101$$5EXP:(DE-H253)FLASHForward-20150101$$aFLASH$$eFLASHForward$$x0
000408109 7001_ $$0P:(DE-H253)PIP1003141$$aFoster, Brian$$b1$$eThesis advisor$$udesy
000408109 7001_ $$0P:(DE-H253)PIP1015562$$aPalmer, Charlotte$$b2$$eThesis advisor$$udesy
000408109 8564_ $$uhttps://bib-pubdb1.desy.de/record/408109/files/Thesis.pdf$$yOpenAccess
000408109 8564_ $$uhttps://bib-pubdb1.desy.de/record/408109/files/desy-thesis-18-027.title.pdf$$yOpenAccess
000408109 8564_ $$uhttps://bib-pubdb1.desy.de/record/408109/files/desy-thesis-18-027.title.gif?subformat=icon$$xicon$$yOpenAccess
000408109 8564_ $$uhttps://bib-pubdb1.desy.de/record/408109/files/desy-thesis-18-027.title.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000408109 8564_ $$uhttps://bib-pubdb1.desy.de/record/408109/files/desy-thesis-18-027.title.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000408109 8564_ $$uhttps://bib-pubdb1.desy.de/record/408109/files/desy-thesis-18-027.title.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000408109 909CO $$ooai:bib-pubdb1.desy.de:408109$$pdnbdelivery$$pdriver$$pVDB$$popenaire$$popen_access
000408109 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011856$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000408109 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003141$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000408109 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1003141$$aExternes Institut$$b1$$kExtern
000408109 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015562$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000408109 9131_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x0
000408109 9141_ $$y2018
000408109 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000408109 920__ $$lyes
000408109 9201_ $$0I:(DE-H253)FLA-20120731$$kFLA$$lForschung Linear Accelerator$$x0
000408109 980__ $$aphd
000408109 980__ $$aVDB
000408109 980__ $$abook
000408109 980__ $$aI:(DE-H253)FLA-20120731
000408109 980__ $$aUNRESTRICTED
000408109 9801_ $$aFullTexts