000399781 001__ 399781 000399781 005__ 20250717101411.0 000399781 0247_ $$2doi$$a10.1088/1475-7516/2018/01/036 000399781 0247_ $$2arXiv$$aarXiv:1706.03774 000399781 0247_ $$2datacite_doi$$a10.3204/PUBDB-2018-00920 000399781 0247_ $$2WOS$$aWOS:000423239300003 000399781 0247_ $$2altmetric$$aaltmetric:32145000 000399781 0247_ $$2inspire$$ainspire:1604857 000399781 0247_ $$2openalex$$aopenalex:W3137264119 000399781 037__ $$aPUBDB-2018-00920 000399781 041__ $$aEnglish 000399781 0881_ $$aDESY-17-082; arXiv:1706.03774 000399781 088__ $$2DESY$$aDESY-17-082 000399781 088__ $$2arXiv$$aarXiv:1706.03774 000399781 082__ $$a530 000399781 1001_ $$0P:(DE-H253)PIP1027465$$aDias, Mafalda$$b0$$eCorresponding author 000399781 245__ $$aSeven lessons from manyfield inflation in random potentials 000399781 260__ $$aLondon$$bIOP$$c2018 000399781 3367_ $$2DRIVER$$aarticle 000399781 3367_ $$2DataCite$$aOutput Types/Journal article 000399781 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport 000399781 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517848156_30714 000399781 3367_ $$2BibTeX$$aARTICLE 000399781 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000399781 3367_ $$00$$2EndNote$$aJournal Article 000399781 500__ $$a© IOP Publishing Ltd and Sissa Medialab 000399781 520__ $$aWe study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the transport method to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of approximately saddle-point inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2-100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the generic predictions of single-field inflation can be emergent features of complex inflation models. 000399781 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0 000399781 536__ $$0G:(EU-Grant)647995$$aSTRINGFLATION - Inflation in String Theory - Connecting Quantum Gravity with Observations (647995)$$c647995$$fERC-2014-CoG$$x1 000399781 588__ $$aDataset connected to CrossRef 000399781 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000399781 7001_ $$0P:(DE-H253)PIP1027475$$aFrazer, Jonathan$$b1$$eCorresponding author 000399781 7001_ $$0P:(DE-HGF)0$$aMarsh, M. C. David$$b2$$eCorresponding author 000399781 773__ $$0PERI:(DE-600)2104147-7$$a10.1088/1475-7516/2018/01/036$$gVol. 2018, no. 01, p. 036 - 036$$n01$$p036$$tJournal of cosmology and astroparticle physics$$v1801$$x1475-7516$$y2018 000399781 7870_ $$0PUBDB-2017-07908$$aDias, Mafalda et.al.$$d2017$$iIsParent$$rDESY-17-082; arXiv:1706.03774$$tSeven Lessons from Manyfield Inflation in Random Potentials 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/1706.03774.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/Dias_2018_J._Cosmol._Astropart._Phys._2018_036.pdf$$yRestricted$$zStatID:(DE-HGF)0599 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/Dias_2018_J._Cosmol._Astropart._Phys._2018_036.gif?subformat=icon$$xicon$$yRestricted$$zStatID:(DE-HGF)0599 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/Dias_2018_J._Cosmol._Astropart._Phys._2018_036.jpg?subformat=icon-1440$$xicon-1440$$yRestricted$$zStatID:(DE-HGF)0599 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/Dias_2018_J._Cosmol._Astropart._Phys._2018_036.jpg?subformat=icon-180$$xicon-180$$yRestricted$$zStatID:(DE-HGF)0599 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/Dias_2018_J._Cosmol._Astropart._Phys._2018_036.jpg?subformat=icon-640$$xicon-640$$yRestricted$$zStatID:(DE-HGF)0599 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/Dias_2018_J._Cosmol._Astropart._Phys._2018_036.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/1706.03774.gif?subformat=icon$$xicon$$yOpenAccess$$zStatID:(DE-HGF)0510 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/1706.03774.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess$$zStatID:(DE-HGF)0510 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/1706.03774.jpg?subformat=icon-180$$xicon-180$$yOpenAccess$$zStatID:(DE-HGF)0510 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/1706.03774.jpg?subformat=icon-640$$xicon-640$$yOpenAccess$$zStatID:(DE-HGF)0510 000399781 8564_ $$uhttps://bib-pubdb1.desy.de/record/399781/files/1706.03774.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510 000399781 909CO $$ooai:bib-pubdb1.desy.de:399781$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000399781 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000399781 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000399781 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COSMOL ASTROPART P : 2015 000399781 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ COSMOL ASTROPART P : 2015 000399781 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000399781 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000399781 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000399781 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000399781 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000399781 9141_ $$y2018 000399781 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027465$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000399781 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027475$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000399781 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0 000399781 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0 000399781 980__ $$ajournal 000399781 980__ $$aVDB 000399781 980__ $$aUNRESTRICTED 000399781 980__ $$areport 000399781 980__ $$aI:(DE-H253)T-20120731 000399781 9801_ $$aFullTexts