000399259 001__ 399259
000399259 005__ 20250730111905.0
000399259 0247_ $$2doi$$a10.1007/s00023-015-0443-8
000399259 0247_ $$2ISSN$$a1424-0637
000399259 0247_ $$2ISSN$$a1424-0661
000399259 0247_ $$2datacite_doi$$a10.3204/PUBDB-2018-00564
000399259 0247_ $$2WOS$$aWOS:000376288300004
000399259 0247_ $$2inspire$$ainspire:1184408
000399259 0247_ $$2arXiv$$aarXiv:1208.3266
000399259 0247_ $$2openalex$$aopenalex:W1533093691
000399259 037__ $$aPUBDB-2018-00564
000399259 041__ $$aEnglish
000399259 082__ $$a530
000399259 088__ $$2DESY$$aDESY-12-133
000399259 088__ $$2arXiv$$aarXiv:1208.3266
000399259 1001_ $$0P:(DE-HGF)0$$aKaufmann, Ralph M.$$b0$$eCorresponding author
000399259 245__ $$aRe-Gauging Groupoid, Symmetries and Degeneracies for Graph Hamiltonians and Applications to the Gyroid Wire Network
000399259 260__ $$aBasel$$bBirkhäuser$$c2016
000399259 3367_ $$2DRIVER$$aarticle
000399259 3367_ $$2DataCite$$aOutput Types/Journal article
000399259 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596994109_23559
000399259 3367_ $$2BibTeX$$aARTICLE
000399259 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000399259 3367_ $$00$$2EndNote$$aJournal Article
000399259 500__ $$a(c) Springer Basel
000399259 520__ $$aWe study a class of graph Hamiltonians given by a type of quiver representation to which we can associate (non)-commutative geometries. By selecting gauging data, these geometries are realized by matrices through an explicit construction or a Kan extension. We describe the changes in gauge via the action of a re-gauging groupoid. It acts via matrices that give rise to a noncommutative 2-cocycle and hence to a groupoid extension (gerbe). We furthermore show that automorphisms of the underlying graph of the quiver can be lifted to extended symmetry groups of re-gaugings. In the commutative case, we deduce that the extended symmetries act via a projective representation. This yields isotypical decompositions and super-selection rules. We apply these results to the primitive cubic, diamond, gyroid and honeycomb wire networks using representation theory for projective groups and show that all the degeneracies in the spectra are consequences of these enhanced symmetries. This includes the Dirac points of the G(yroid) and the honeycomb systems.
000399259 536__ $$0G:(DE-HGF)POF2-51x$$a51x - Programm Elementarteilchenphysik - Topic unbekannt (POF2-51x)$$cPOF2-51x$$fPOF II$$x0
000399259 588__ $$aDataset connected to CrossRef
000399259 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000399259 7001_ $$0P:(DE-HGF)0$$aKhlebnikov, Sergei$$b1
000399259 7001_ $$0P:(DE-HGF)0$$aWehefritz-Kaufmann, Birgit$$b2
000399259 773__ $$0PERI:(DE-600)2019605-2$$a10.1007/s00023-015-0443-8$$gVol. 17, no. 6, p. 1383 - 1414$$n6$$p1383 - 1414$$tAnnales Henri Poincaré$$v17$$x1424-0661$$y2016
000399259 7870_ $$0PHPPUBDB-22743$$aKaufmann, R. M. et.al.$$d2012$$iIsParent$$rDESY-12-133 ; arXiv:1208.3266$$tRe-gauging groupoid, symmetries and degeneracies for Graph Hamiltonians and applications to the Gyroid wire network
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/10.1007_s00023-015-0443-8-1.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/1208.3266.pdf$$yPublished on 2015-10-20. Available in OpenAccess from 2016-10-20.$$zStatID:(DE-HGF)0510
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/10.1007_s00023-015-0443-8-1.gif?subformat=icon$$xicon$$yRestricted$$zStatID:(DE-HGF)0599
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/10.1007_s00023-015-0443-8-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted$$zStatID:(DE-HGF)0599
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/10.1007_s00023-015-0443-8-1.jpg?subformat=icon-180$$xicon-180$$yRestricted$$zStatID:(DE-HGF)0599
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/10.1007_s00023-015-0443-8-1.jpg?subformat=icon-640$$xicon-640$$yRestricted$$zStatID:(DE-HGF)0599
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/10.1007_s00023-015-0443-8-1.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/1208.3266.gif?subformat=icon$$xicon$$yPublished on 2015-10-20. Available in OpenAccess from 2016-10-20.$$zStatID:(DE-HGF)0510
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/1208.3266.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2015-10-20. Available in OpenAccess from 2016-10-20.$$zStatID:(DE-HGF)0510
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/1208.3266.jpg?subformat=icon-180$$xicon-180$$yPublished on 2015-10-20. Available in OpenAccess from 2016-10-20.$$zStatID:(DE-HGF)0510
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/1208.3266.jpg?subformat=icon-640$$xicon-640$$yPublished on 2015-10-20. Available in OpenAccess from 2016-10-20.$$zStatID:(DE-HGF)0510
000399259 8564_ $$uhttps://bib-pubdb1.desy.de/record/399259/files/1208.3266.pdf?subformat=pdfa$$xpdfa$$yPublished on 2015-10-20. Available in OpenAccess from 2016-10-20.$$zStatID:(DE-HGF)0510
000399259 909CO $$ooai:bib-pubdb1.desy.de:399259$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000399259 9131_ $$0G:(DE-HGF)POF2-51x$$1G:(DE-HGF)POF2-510$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lElementarteilchenphysik$$vProgramm Elementarteilchenphysik - Topic unbekannt$$x1
000399259 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000399259 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000399259 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000399259 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN HENRI POINCARE : 2015
000399259 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000399259 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000399259 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000399259 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000399259 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000399259 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000399259 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000399259 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000399259 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000399259 980__ $$ajournal
000399259 980__ $$aVDB
000399259 980__ $$aUNRESTRICTED
000399259 980__ $$aI:(DE-H253)T-20120731
000399259 9801_ $$aFullTexts