000392553 001__ 392553
000392553 005__ 20250804154806.0
000392553 0247_ $$2doi$$a10.1007/s100520000278
000392553 0247_ $$2ISSN$$a1434-6044
000392553 0247_ $$2ISSN$$a1434-6052
000392553 0247_ $$2WOS$$aWOS:000086454800009
000392553 0247_ $$2inspire$$ainspire:506536
000392553 0247_ $$2openalex$$aopenalex:W3102216739
000392553 037__ $$aPUBDB-2017-10951
000392553 041__ $$aEnglish
000392553 082__ $$a530
000392553 0881_ $$ahep-ph/9909242; DESY-99-128
000392553 088__ $$2arXiv$$ahep-ph/9909242
000392553 088__ $$2DESY$$aDESY-99-128
000392553 1001_ $$0P:(DE-HGF)0$$aCzakon, M.$$b0
000392553 245__ $$aConfronting electroweak precision measurements with new physics models
000392553 260__ $$aBerlin$$bSpringer$$c2000
000392553 3367_ $$2DRIVER$$aarticle
000392553 3367_ $$2DataCite$$aOutput Types/Journal article
000392553 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport
000392553 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1506331528_3592
000392553 3367_ $$2BibTeX$$aARTICLE
000392553 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000392553 3367_ $$00$$2EndNote$$aJournal Article
000392553 500__ $$aDESY-Zeuthen
000392553 520__ $$aPrecision experiments, such as those performed at LEP and SLC, offer us an excellent opportunity to constrain extended gauge model parameters. To this end, it is often assumed, that in order to obtain more reliable estimates, one should include the sizable one--loop Standard Model (SM) corrections, which modify the $Z^0$ couplings as well as other observables. This conviction is based on the belief that the higher order contributions from the ``extension sector'' will be numerically small. However, the structure of higher order corrections can be quite different when comparing the SM with its extension, thus one should avoid assumptions which do not care about such facts. This is the case for all models with $\rho_{\rm tree} \equiv M_W^2/(M_{Z}^2\cos^2{\Theta_W}) \neq 1$. As an example, both the manifest left-right symmetric model and the $SU(2)_L \otimes U(1)_Y \otimes \tilde{U}(1)$ model, with an additional $Z'$ boson, are discussed and special attention to the top contribution to $\Delta \rho$ is given. We conclude that the only sensible way to confront a model with the experimental data is to renormalize it self-consistently, if not, parameters which depend strongly on quantum effects should be left free in fits, though essential physics is lost in this way. We should note that arguments given here allow us to state that at the level of loop corrections (indirect effects) there is nothing like a ``model independent global analysis'' of the data.
000392553 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000392553 588__ $$aDataset connected to CrossRef, INSPIRE
000392553 650_7 $$2INSPIRE$$aelectroweak interaction: rho parameter
000392553 650_7 $$2INSPIRE$$aradiative correction: higher-order
000392553 650_7 $$2INSPIRE$$asymmetry: left-right
000392553 650_7 $$2INSPIRE$$agauge field theory: SU(2) x U(1) x U(1)
000392553 650_7 $$2INSPIRE$$aZ'
000392553 650_7 $$2INSPIRE$$agauge boson: propagator
000392553 650_7 $$2INSPIRE$$apropagator: renormalization
000392553 650_7 $$2INSPIRE$$anumerical calculations: interpretation of experiments
000392553 650_7 $$2INSPIRE$$abibliography
000392553 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000392553 7001_ $$0P:(DE-HGF)0$$aGluza, J.$$b1
000392553 7001_ $$0P:(DE-H253)PIP1003770$$aJegerlehner, F.$$b2
000392553 7001_ $$0P:(DE-HGF)0$$aZralek, M.$$b3
000392553 773__ $$0PERI:(DE-600)1459069-4$$a10.1007/s100520000278$$gVol. 13, no. 2, p. 275 - 281$$n2$$p275 - 281$$tThe @European physical journal / C$$v13$$x1434-6044$$y2000
000392553 8564_ $$uhttps://bib-pubdb1.desy.de/record/392553/files/10.1007Fs100520000278.pdf$$yRestricted
000392553 8564_ $$uhttps://bib-pubdb1.desy.de/record/392553/files/10.1007Fs100520000278.gif?subformat=icon$$xicon$$yRestricted
000392553 8564_ $$uhttps://bib-pubdb1.desy.de/record/392553/files/10.1007Fs100520000278.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000392553 8564_ $$uhttps://bib-pubdb1.desy.de/record/392553/files/10.1007Fs100520000278.jpg?subformat=icon-180$$xicon-180$$yRestricted
000392553 8564_ $$uhttps://bib-pubdb1.desy.de/record/392553/files/10.1007Fs100520000278.jpg?subformat=icon-640$$xicon-640$$yRestricted
000392553 8564_ $$uhttps://bib-pubdb1.desy.de/record/392553/files/10.1007Fs100520000278.pdf?subformat=pdfa$$xpdfa$$yRestricted
000392553 909CO $$ooai:bib-pubdb1.desy.de:392553$$pVDB
000392553 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1003770$$aExternes Institut$$b2$$kExtern
000392553 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000392553 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000392553 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J C : 2015
000392553 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000392553 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000392553 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000392553 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000392553 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000392553 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000392553 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000392553 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000392553 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000392553 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000392553 9201_ $$0I:(DE-H253)DESY_-2012_-20170516$$kDESY(-2012)$$lDESY Retrocat$$x0
000392553 980__ $$ajournal
000392553 980__ $$aVDB
000392553 980__ $$areport
000392553 980__ $$aI:(DE-H253)DESY_-2012_-20170516
000392553 980__ $$aUNRESTRICTED