001     390612
005     20250730103917.0
024 7 _ |a 10.3762/bjnano.8.104
|2 doi
024 7 _ |a 10.3204/PUBDB-2017-09669
|2 datacite_doi
024 7 _ |a WOS:000406241500001
|2 WOS
024 7 _ |a pmid:28546897
|2 pmid
024 7 _ |a openalex:W2612312120
|2 openalex
037 _ _ |a PUBDB-2017-09669
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Cerc Korošec, Romana
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Structural properties and thermal stability of cobalt- and chromium-doped $\mathrm{\alpha-MnO_{2}}$ nanorods
260 _ _ |a Frankfurt, M.
|c 2017
|b Beilstein-Institut zur Förderung der Chemischen Wissenschaften
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1519123053_5483
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a $\alpha$-MnO$_{2}$ nanorods were synthesized via the hydrothermal decomposition of KMnO$_4$ in an acidic environment in the presence of Co$^{2+}$ and Cr$^{3+}$ ions. Reactions were carried out at three different temperatures: 90, 130 and 170 °C. All prepared samples exhibit a tetragonal MnO$_2$ crystalline phase. SEM–EDS analysis shows that cobalt cations are incorporated to a higher degree into the MnO$_2$ framework than chromium ions, and that the content of the dopant ions decreases with increasing reaction temperature. The oxidation of Co$^{2+}$ to Co$^{3+}$ during the reaction was proved by an XANES study, while EXAFS results confirm that both dopant ions substitute Mn$^{4+}$ in the center of an octahedron. The K/Mn ratio in the doped samples synthesized at 170 °C is significantly lower than in the undoped samples. Analysis of an individual cobalt-doped $\alpha$-MnO$_{2}$ nanorod with HAADF-STEM reveals that the distribution of cobalt through the cross-section of the nanorod is uniform. The course of thermal decomposition of the doped nanorods is similar to that of the undoped ones. Dopant ions do not preserve the MnO$_2$ phase at higher temperatures nor do they destabilize the cryptomelane structure.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
536 _ _ |a FS-Proposal: II-20080058 EC (II-20080058-EC)
|0 G:(DE-H253)II-20080058-EC
|c II-20080058-EC
|x 1
536 _ _ |a FS-Proposal: I-20110082 EC (I-20110082-EC)
|0 G:(DE-H253)I-20110082-EC
|c I-20110082-EC
|x 2
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a DORIS III
|f DORIS Beamline C
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-C-20150101
|6 EXP:(DE-H253)D-C-20150101
|x 0
700 1 _ |a Umek, Polona
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gloter, Alexandre
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Padežnik Gomilšek, Jana
|0 P:(DE-H253)PIP1008431
|b 3
700 1 _ |a Bukovec, Peter
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.3762/bjnano.8.104
|g Vol. 8, p. 1032 - 1042
|0 PERI:(DE-600)2583584-1
|p 1032 - 1042
|t Beilstein journal of nanotechnology
|v 8
|y 2017
|x 2190-4286
856 4 _ |u https://www.beilstein-journals.org/bjnano/articles/8/104
856 4 _ |u https://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:390612
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1008431
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BEILSTEIN J NANOTECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21