000390612 001__ 390612
000390612 005__ 20250730103917.0
000390612 0247_ $$2doi$$a10.3762/bjnano.8.104
000390612 0247_ $$2datacite_doi$$a10.3204/PUBDB-2017-09669
000390612 0247_ $$2WOS$$aWOS:000406241500001
000390612 0247_ $$2pmid$$apmid:28546897
000390612 0247_ $$2openalex$$aopenalex:W2612312120
000390612 037__ $$aPUBDB-2017-09669
000390612 041__ $$aEnglish
000390612 082__ $$a620
000390612 1001_ $$0P:(DE-HGF)0$$aCerc Korošec, Romana$$b0$$eCorresponding author
000390612 245__ $$aStructural properties and thermal stability of cobalt- and chromium-doped $\mathrm{\alpha-MnO_{2}}$ nanorods
000390612 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2017
000390612 3367_ $$2DRIVER$$aarticle
000390612 3367_ $$2DataCite$$aOutput Types/Journal article
000390612 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1519123053_5483
000390612 3367_ $$2BibTeX$$aARTICLE
000390612 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000390612 3367_ $$00$$2EndNote$$aJournal Article
000390612 520__ $$a$\alpha$-MnO$_{2}$  nanorods were synthesized via the hydrothermal decomposition of KMnO$_4$ in an acidic environment in the presence of Co$^{2+}$ and Cr$^{3+}$ ions. Reactions were carried out at three different temperatures: 90, 130 and 170 °C. All prepared samples exhibit a tetragonal MnO$_2$ crystalline phase. SEM–EDS analysis shows that cobalt cations are incorporated to a higher degree into the MnO$_2$ framework than chromium ions, and that the content of the dopant ions decreases with increasing reaction temperature. The oxidation of Co$^{2+}$ to Co$^{3+}$ during the reaction was proved by an XANES study, while EXAFS results confirm that both dopant ions substitute Mn$^{4+}$ in the center of an octahedron. The K/Mn ratio in the doped samples synthesized at 170 °C is significantly lower than in the undoped samples. Analysis of an individual cobalt-doped $\alpha$-MnO$_{2}$  nanorod with HAADF-STEM reveals that the distribution of cobalt through the cross-section of the nanorod is uniform. The course of thermal decomposition of the doped nanorods is similar to that of the undoped ones. Dopant ions do not preserve the MnO$_2$ phase at higher temperatures nor do they destabilize the cryptomelane structure.
000390612 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000390612 536__ $$0G:(DE-H253)II-20080058-EC$$aFS-Proposal: II-20080058 EC (II-20080058-EC)$$cII-20080058-EC$$x1
000390612 536__ $$0G:(DE-H253)I-20110082-EC$$aFS-Proposal: I-20110082 EC (I-20110082-EC)$$cI-20110082-EC$$x2
000390612 588__ $$aDataset connected to CrossRef
000390612 693__ $$0EXP:(DE-H253)D-C-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-C-20150101$$aDORIS III$$fDORIS Beamline C$$x0
000390612 7001_ $$0P:(DE-HGF)0$$aUmek, Polona$$b1
000390612 7001_ $$0P:(DE-HGF)0$$aGloter, Alexandre$$b2
000390612 7001_ $$0P:(DE-H253)PIP1008431$$aPadežnik Gomilšek, Jana$$b3
000390612 7001_ $$0P:(DE-HGF)0$$aBukovec, Peter$$b4
000390612 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.8.104$$gVol. 8, p. 1032 - 1042$$p1032 - 1042$$tBeilstein journal of nanotechnology$$v8$$x2190-4286$$y2017
000390612 8564_ $$uhttps://www.beilstein-journals.org/bjnano/articles/8/104
000390612 8564_ $$uhttps://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.pdf$$yOpenAccess
000390612 8564_ $$uhttps://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.gif?subformat=icon$$xicon$$yOpenAccess
000390612 8564_ $$uhttps://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000390612 8564_ $$uhttps://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000390612 8564_ $$uhttps://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000390612 8564_ $$uhttps://bib-pubdb1.desy.de/record/390612/files/2190-4286-8-104.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000390612 909CO $$ooai:bib-pubdb1.desy.de:390612$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000390612 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008431$$aExternes Institut$$b3$$kExtern
000390612 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000390612 9141_ $$y2017
000390612 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000390612 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000390612 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2015
000390612 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000390612 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000390612 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000390612 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000390612 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000390612 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000390612 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000390612 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000390612 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000390612 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000390612 980__ $$ajournal
000390612 980__ $$aVDB
000390612 980__ $$aI:(DE-H253)HAS-User-20120731
000390612 980__ $$aUNRESTRICTED
000390612 9801_ $$aFullTexts