000332356 001__ 332356
000332356 005__ 20250804165604.0
000332356 0247_ $$2doi$$a10.1016/1047-8477(92)90010-8
000332356 0247_ $$2ISSN$$a1047-8477
000332356 0247_ $$2ISSN$$a1095-8657
000332356 0247_ $$2WOS$$aWOS:A1992HL84900001
000332356 0247_ $$2pmid$$apmid:1486008
000332356 0247_ $$2altmetric$$aaltmetric:41270589
000332356 0247_ $$2openalex$$aopenalex:W2081566990
000332356 037__ $$aPUBDB-2017-08622
000332356 041__ $$aEnglish
000332356 082__ $$a540
000332356 1001_ $$0P:(DE-H253)PIP1018784$$aBrandenburg, K.$$b0$$eCorresponding author
000332356 245__ $$aPhase diagram of deep rough mutant lipopolysaccharide from Salmonella minnesota R595
000332356 260__ $$aSan Diego, Calif.$$bElsevier$$c1992
000332356 3367_ $$2DRIVER$$aarticle
000332356 3367_ $$2DataCite$$aOutput Types/Journal article
000332356 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501144533_10002
000332356 3367_ $$2BibTeX$$aARTICLE
000332356 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000332356 3367_ $$00$$2EndNote$$aJournal Article
000332356 500__ $$aEMBL
000332356 520__ $$aThe structural polymorphism of deep rough mutant lipopolysaccharide—in many biological systems the most active endotoxin—from Salmonella minnesota strain R595 was investigated as function of temperature, water content, and Mg2+ concentration. Differential scanning calorimetry was used to determine the amount of bound water and the enthalpy change at the β ↔ α gel to liquid crystalline acyl chain melting. The onset, midtemperature Tc, and completion of the β ↔ α phase transition were studied with Fourier-transform infrared spectroscopy. Synchrotron radiation X-ray diffraction was used to characterize the supramolecular three-dimensional structures in each phase state. The results indicate an extremely complex dependence of the structural behavior of LPS on ambient conditions. The β ↔ α acyl chain melting temperature Tc lying at 30°C at high water content (95%) increases with decreasing water content reaching a value of 50°C at 30% water content. Concomitantly, a broadening of the transition range takes place. At still lower water content, no distinct phase transition can be observed. This behavior is even more clearly expressed in the presence of Mg2+. In the lower water concentration range (<50%) at temperatures below 70°C, only lamellar structures can be observed independent of the Mg2+ concentration. This correlates with the absence of free water. Above 50% water concentration, the supramolecular structure below 70°C strongly depends on the [LPS]:[Mg2+] ratio. For large [LPS]:[Mg2+] ratios, the predominant structure is nonlamellar, for smaller [LPS]:[Mg2+] ratios there is a superposition of lamellar and nonlamellar structures. At an equimolar ratio of LPS and Mg2+ a multibilayered organization is observed. The nonlamellar structures can be assigned in various cases to structures with cubic symmetry with periodicities between 12 and 16 nm. Under all investigated conditions, a transition into the hexagonal II structure takes place between 70 and 80°C. These observations are discussed in relation to the biological importance of LPS as constituent of the outer membrane of gram-negative bacteria and as potent inducer of biological effects in mammals
000332356 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000332356 588__ $$aDataset connected to CrossRef
000332356 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000332356 7001_ $$0P:(DE-HGF)0$$aKoch, M. H. J.$$b1
000332356 7001_ $$0P:(DE-HGF)0$$aSeydel, U.$$b2$$eCorresponding author
000332356 773__ $$0PERI:(DE-600)1469822-5$$a10.1016/1047-8477(92)90010-8$$gVol. 108, no. 2, p. 93 - 106$$n2$$p93 - 106$$tJournal of structural biology$$v108$$x1047-8477$$y1992
000332356 8564_ $$uhttps://bib-pubdb1.desy.de/record/332356/files/Phase%20diagram%20of%20deep%20rough%20mutant%20lipopolysaccharide%20from%20Salmonella%20minnesota%20R595.pdf$$yRestricted
000332356 8564_ $$uhttps://bib-pubdb1.desy.de/record/332356/files/Phase%20diagram%20of%20deep%20rough%20mutant%20lipopolysaccharide%20from%20Salmonella%20minnesota%20R595.gif?subformat=icon$$xicon$$yRestricted
000332356 8564_ $$uhttps://bib-pubdb1.desy.de/record/332356/files/Phase%20diagram%20of%20deep%20rough%20mutant%20lipopolysaccharide%20from%20Salmonella%20minnesota%20R595.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000332356 8564_ $$uhttps://bib-pubdb1.desy.de/record/332356/files/Phase%20diagram%20of%20deep%20rough%20mutant%20lipopolysaccharide%20from%20Salmonella%20minnesota%20R595.jpg?subformat=icon-180$$xicon-180$$yRestricted
000332356 8564_ $$uhttps://bib-pubdb1.desy.de/record/332356/files/Phase%20diagram%20of%20deep%20rough%20mutant%20lipopolysaccharide%20from%20Salmonella%20minnesota%20R595.jpg?subformat=icon-640$$xicon-640$$yRestricted
000332356 8564_ $$uhttps://bib-pubdb1.desy.de/record/332356/files/Phase%20diagram%20of%20deep%20rough%20mutant%20lipopolysaccharide%20from%20Salmonella%20minnesota%20R595.pdf?subformat=pdfa$$xpdfa$$yRestricted
000332356 909CO $$ooai:bib-pubdb1.desy.de:332356$$pVDB
000332356 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1018784$$aExternes Institut$$b0$$kExtern
000332356 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000332356 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000332356 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ STRUCT BIOL : 2015
000332356 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000332356 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000332356 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000332356 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000332356 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000332356 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000332356 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000332356 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000332356 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000332356 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000332356 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000332356 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000332356 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000332356 9201_ $$0I:(DE-H253)DESY_-2012_-20170516$$kDESY(-2012)$$lDESY Retrocat$$x0
000332356 980__ $$ajournal
000332356 980__ $$aVDB
000332356 980__ $$aI:(DE-H253)DESY_-2012_-20170516
000332356 980__ $$aUNRESTRICTED