000331506 001__ 331506 000331506 005__ 20211110143305.0 000331506 0247_ $$2arXiv$$aarXiv:1706.03774 000331506 0247_ $$2datacite_doi$$a10.3204/PUBDB-2017-07908 000331506 0247_ $$2inspire$$ainspire:1604857 000331506 037__ $$aPUBDB-2017-07908 000331506 041__ $$aEnglish 000331506 0881_ $$aDESY-17-082; arXiv:1706.03774 000331506 088__ $$2DESY$$aDESY-17-082 000331506 088__ $$2arXiv$$aarXiv:1706.03774 000331506 1001_ $$0P:(DE-H253)PIP1027465$$aDias, Mafalda$$b0 000331506 245__ $$aSeven Lessons from Manyfield Inflation in Random Potentials 000331506 260__ $$c2017 000331506 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1503566645_30844 000331506 3367_ $$2ORCID$$aWORKING_PAPER 000331506 3367_ $$028$$2EndNote$$aElectronic Article 000331506 3367_ $$2DRIVER$$apreprint 000331506 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport 000331506 3367_ $$2BibTeX$$aARTICLE 000331506 3367_ $$2DataCite$$aOutput Types/Working Paper 000331506 520__ $$aWe study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the transport method to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of approximately saddle-point inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2-100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the generic predictions of single-field inflation can be emergent features of complex inflation models. 000331506 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0 000331506 536__ $$0G:(EU-Grant)647995$$aSTRINGFLATION - Inflation in String Theory - Connecting Quantum Gravity with Observations (647995)$$c647995$$fERC-2014-CoG$$x1 000331506 588__ $$aDataset connected to INSPIRE 000331506 650_7 $$2INSPIRE$$amatrix model: random 000331506 650_7 $$2INSPIRE$$ainflation: model 000331506 650_7 $$2INSPIRE$$apotential: random 000331506 650_7 $$2INSPIRE$$apotential: scalar 000331506 650_7 $$2INSPIRE$$asaddle-point approximation 000331506 650_7 $$2INSPIRE$$acorrelation function 000331506 650_7 $$2INSPIRE$$aisocurvature 000331506 650_7 $$2INSPIRE$$astatistical 000331506 650_7 $$2INSPIRE$$atachyon: field theory 000331506 650_7 $$2INSPIRE$$asatellite: Planck 000331506 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000331506 7001_ $$0P:(DE-H253)PIP1027475$$aFrazer, Jonathan$$b1 000331506 7001_ $$0P:(DE-HGF)0$$aMarsh, M. c. David$$b2$$eCorresponding author 000331506 8564_ $$uhttps://bib-pubdb1.desy.de/record/331506/files/1706.03774.pdf$$yOpenAccess 000331506 8564_ $$uhttps://bib-pubdb1.desy.de/record/331506/files/1706.03774.gif?subformat=icon$$xicon$$yOpenAccess 000331506 8564_ $$uhttps://bib-pubdb1.desy.de/record/331506/files/1706.03774.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000331506 8564_ $$uhttps://bib-pubdb1.desy.de/record/331506/files/1706.03774.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000331506 8564_ $$uhttps://bib-pubdb1.desy.de/record/331506/files/1706.03774.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000331506 8564_ $$uhttps://bib-pubdb1.desy.de/record/331506/files/1706.03774.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000331506 909CO $$ooai:bib-pubdb1.desy.de:331506$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000331506 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027465$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000331506 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027475$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000331506 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0 000331506 9141_ $$y2017 000331506 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000331506 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished 000331506 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0 000331506 980__ $$apreprint 000331506 980__ $$aVDB 000331506 980__ $$aUNRESTRICTED 000331506 980__ $$areport 000331506 980__ $$aI:(DE-H253)T-20120731 000331506 9801_ $$aFullTexts