000320228 001__ 320228 000320228 005__ 20250730103720.0 000320228 0247_ $$2doi$$a10.1103/PhysRevE.95.032144 000320228 0247_ $$2ISSN$$a1063-651X 000320228 0247_ $$2ISSN$$a1095-3787 000320228 0247_ $$2ISSN$$a1539-3755 000320228 0247_ $$2ISSN$$a1550-2376 000320228 0247_ $$2ISSN$$a2470-0045 000320228 0247_ $$2ISSN$$a2470-0053 000320228 0247_ $$2datacite_doi$$a10.3204/PUBDB-2017-01596 000320228 0247_ $$2WOS$$aWOS:000399148000005 000320228 0247_ $$2pmid$$apmid:28415253 000320228 0247_ $$2altmetric$$aaltmetric:32157985 000320228 0247_ $$2inspire$$ainspire:1472354 000320228 0247_ $$2arXiv$$aarXiv:1606.07768 000320228 0247_ $$2openalex$$aopenalex:W2464070058 000320228 037__ $$aPUBDB-2017-01596 000320228 041__ $$aEnglish 000320228 082__ $$a530 000320228 0881_ $$aDESY-16-104; IFT-UAM-CSIC-16-053; arXiv:1606.07768 000320228 088__ $$2DESY$$aDESY-16-104 000320228 088__ $$2Other$$aIFT-UAM-CSIC-16-053 000320228 088__ $$2arXiv$$aarXiv:1606.07768 000320228 1001_ $$0P:(DE-HGF)0$$aPedro, Francisco Gil$$b0 000320228 245__ $$aNonequilibrium random matrix theory: Transition probabilities 000320228 260__ $$aWoodbury, NY$$bAPS$$c2017 000320228 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2017-03-28 000320228 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2017-03-01 000320228 3367_ $$2DRIVER$$aarticle 000320228 3367_ $$2DataCite$$aOutput Types/Journal article 000320228 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport 000320228 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589199969_30197 000320228 3367_ $$2BibTeX$$aARTICLE 000320228 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000320228 3367_ $$00$$2EndNote$$aJournal Article 000320228 500__ $$aREVTeX, 5 pages, 2 figures 000320228 520__ $$aIn this paper we present an analytic method for calculating the transition probability between two random Gaussian matrices with given eigenvalue spectra in the context of Dyson Brownian motion. We show that in the Coulomb gas language, in large N limit, memory of the initial state is preserved in the form of a universal linear potential acting on the eigenvalues. We compute the likelihood of any given transition as a function of time, showing that as memory of the initial state is lost, transition probabilities converge to those of the static ensemble. 000320228 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0 000320228 536__ $$0G:(EU-Grant)320421$$aSPLE - String Phenomenology in the LHC Era (320421)$$c320421$$fERC-2012-ADG_20120216$$x1 000320228 536__ $$0G:(EU-Grant)647995$$aSTRINGFLATION - Inflation in String Theory - Connecting Quantum Gravity with Observations (647995)$$c647995$$fERC-2014-CoG$$x2 000320228 542__ $$2Crossref$$i2017-03-28$$uhttp://link.aps.org/licenses/aps-default-license 000320228 588__ $$aDataset connected to CrossRef 000320228 650_7 $$2INSPIRE$$amatrix model: random 000320228 650_7 $$2INSPIRE$$apotential: linear 000320228 650_7 $$2INSPIRE$$agas: Coulomb 000320228 650_7 $$2INSPIRE$$ainitial state 000320228 650_7 $$2INSPIRE$$aexpansion 1/N 000320228 650_7 $$2INSPIRE$$atime dependence 000320228 650_7 $$2INSPIRE$$aBrownian motion 000320228 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000320228 7001_ $$0P:(DE-H253)PIP1013212$$aWestphal, Alexander$$b1$$udesy 000320228 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.95.032144$$bAmerican Physical Society (APS)$$d2017-03-28$$n3$$p032144$$tPhysical Review E$$v95$$x2470-0045$$y2017 000320228 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.95.032144$$gVol. 95, no. 3, p. 032144$$n3$$p032144$$tPhysical review / E$$v95$$x2470-0045$$y2017 000320228 7870_ $$0PUBDB-2016-02550$$aPedro, Francisco Gil et.al.$$d2016$$iIsParent$$rDESY-16-104; IFT-UAM-CSIC-16-053; arXiv:1606.07768$$tNon-Equilibrium Random Matrix Theory : Transition Probabilities 000320228 8564_ $$uhttps://bib-pubdb1.desy.de/record/320228/files/PhysRevE.95.032144.pdf$$yOpenAccess 000320228 8564_ $$uhttps://bib-pubdb1.desy.de/record/320228/files/PhysRevE.95.032144.gif?subformat=icon$$xicon$$yOpenAccess 000320228 8564_ $$uhttps://bib-pubdb1.desy.de/record/320228/files/PhysRevE.95.032144.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000320228 8564_ $$uhttps://bib-pubdb1.desy.de/record/320228/files/PhysRevE.95.032144.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000320228 8564_ $$uhttps://bib-pubdb1.desy.de/record/320228/files/PhysRevE.95.032144.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000320228 909CO $$ooai:bib-pubdb1.desy.de:320228$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000320228 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013212$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000320228 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0 000320228 9141_ $$y2017 000320228 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000320228 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000320228 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000320228 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000320228 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000320228 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000320228 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000320228 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000320228 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000320228 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000320228 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2015 000320228 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000320228 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000320228 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0 000320228 980__ $$ajournal 000320228 980__ $$aVDB 000320228 980__ $$aUNRESTRICTED 000320228 980__ $$areport 000320228 980__ $$aI:(DE-H253)T-20120731 000320228 9801_ $$aFullTexts 000320228 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0962492904000236 000320228 999C5 $$1J.-P. Bouchard$$2Crossref$$oJ.-P. Bouchard Handbook on Random Matrix Theory$$tHandbook on Random Matrix Theory 000320228 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1703862 000320228 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.36.823 000320228 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00220-004-1196-2 000320228 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.160201 000320228 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.77.041108 000320228 999C5 $$1F. G. Tricomi$$2Crossref$$oF. G. Tricomi Integral Equations 1957$$tIntegral Equations$$y1957 000320228 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.530529 000320228 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1475-7516/2013/11/040 000320228 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2014.10.022