001     317354
005     20250730111829.0
024 7 _ |a 10.1002/ppsc.201600069
|2 doi
024 7 _ |a 0934-0866
|2 ISSN
024 7 _ |a 1521-4117
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2017-00633
|2 datacite_doi
024 7 _ |a WOS:000383680100007
|2 WOS
024 7 _ |a altmetric:8707218
|2 altmetric
024 7 _ |a openalex:W2434651499
|2 openalex
037 _ _ |a PUBDB-2017-00633
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Leib, Elisabeth W.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a High-Temperature Stable Zirconia Particles Doped with Yttrium, Lanthanum, and Gadolinium
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484838643_9124
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Zirconia microspheres synthesized by a wet-chemical sol–gel process arepromising building blocks for various photonic applications considered forheat management and energy systems, including highly effi cient refl ectivethermal barrier coatings and absorbers/emitters used in thermophotovoltaicsystems. As previously shown, pure zirconia microparticles deteriorate atworking temperatures of ≥1000 °C. While the addition of yttrium as a dopanthas been shown to improve their phase stability, pronounced grain growthat temperatures of ≥1000 °C compromises the photonic structure of theassembled microspheres. Here, a new approach for the fabrication of highlystable ceramic microparticles by doping with lanthanum, gadolinium, and acombination of those with yttrium is introduced. The morphological changesof the particles are monitored by scanning electron microscopy, ex situX-ray diffraction (XRD), and in situ high-energy XRD as a function of dopantconcentration up to 1500 °C. While the addition of lanthanum or gadoliniumhas a strong grain growth attenuating effect, it alone is insuffi cient to avoida destructive tetragonal-to-monoclinic phase transformation occurring afterheating to >850 °C. However, combining lanthanum or gadolinium withyttrium leads to particles with both effi cient phase stabilization and attenuatedgrain growth. Thus, ceramic microspheres are yielded that remainextremely stable after heating to 1200 °C.
536 _ _ |a 6G3 - PETRA III (POF3-622)
|0 G:(DE-HGF)POF3-6G3
|c POF3-622
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a PETRA III
|f PETRA Beamline P07
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P07-20150101
|6 EXP:(DE-H253)P-P07-20150101
|x 0
700 1 _ |a Pasquarelli, Robert M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Blankenburg, Malte
|0 P:(DE-H253)PIP1012420
|b 2
700 1 _ |a Müller, Martin
|0 P:(DE-H253)PIP1001891
|b 3
700 1 _ |a Schreyer, Andreas
|0 P:(DE-H253)PIP1006650
|b 4
700 1 _ |a Janssen, Rolf
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Weller, Horst
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vossmeyer, Tobias
|0 P:(DE-H253)PIP1023847
|b 7
|e Corresponding author
773 _ _ |a 10.1002/ppsc.201600069
|g Vol. 33, no. 9, p. 645 - 655
|0 PERI:(DE-600)1481071-2
|n 9
|p 645 - 655
|t Particle & particle systems characterization
|v 33
|y 2016
|x 0934-0866
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/317354/files/Leib_SFB-2016-Particle_%26_Particle_Systems_Characterization.pdf
856 4 _ |y OpenAccess
|x icon
|u https://bib-pubdb1.desy.de/record/317354/files/Leib_SFB-2016-Particle_%26_Particle_Systems_Characterization.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://bib-pubdb1.desy.de/record/317354/files/Leib_SFB-2016-Particle_%26_Particle_Systems_Characterization.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://bib-pubdb1.desy.de/record/317354/files/Leib_SFB-2016-Particle_%26_Particle_Systems_Characterization.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://bib-pubdb1.desy.de/record/317354/files/Leib_SFB-2016-Particle_%26_Particle_Systems_Characterization.jpg?subformat=icon-640
909 C O |o oai:bib-pubdb1.desy.de:317354
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1012420
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 3
|6 P:(DE-H253)PIP1001891
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1006650
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1023847
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-622
|2 G:(DE-HGF)POF3-600
|v Facility topic: Research on Matter with Brilliant Light Sources
|9 G:(DE-HGF)POF3-6G3
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PART PART SYST CHAR : 2015
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)HZG-20120731
|k HZG
|l Zentrum für Material- und Küstenforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)HZG-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21