000317353 001__ 317353
000317353 005__ 20211110140715.0
000317353 0247_ $$2datacite_doi$$a10.3204/PUBDB-2017-00632
000317353 037__ $$aPUBDB-2017-00632
000317353 041__ $$aGerman
000317353 1001_ $$0P:(DE-H253)PIP1009181$$aBroemmelhoff, Katrin$$b0$$eCorresponding author$$gfemale
000317353 245__ $$aUntersuchungen zur Spanbildung metallischer Werkstoffe anhand von in situ Röntgenbeugungsexperimenten$$f2013-06-01 - 2013-09-01
000317353 260__ $$bUniversität Berlin$$c2016
000317353 300__ $$a1-154
000317353 3367_ $$2DataCite$$aOutput Types/Dissertation
000317353 3367_ $$2ORCID$$aDISSERTATION
000317353 3367_ $$2BibTeX$$aPHDTHESIS
000317353 3367_ $$02$$2EndNote$$aThesis
000317353 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1485275616_6696
000317353 3367_ $$2DRIVER$$adoctoralThesis
000317353 502__ $$aTechnische Universität Berlin, Diss., 2016$$bDr.$$cTechnische Universität Berlin$$d2016$$o2016-06-22
000317353 520__ $$aFor the optimization of machining processes with geometrically defined cutting edge afundamental understanding of the chip formation process is necessary. However it islimited due to the hard metrological detectability of the area of action. Modern sourcesfor high energetic synchrotron radiation and new detectors enable in situ diffractionexperiments during the cutting process within a very small gauge volume.In the present study the method of in situ diffraction with high-energy synchrotronX-radiation was used for the first time for a comprehensive study of the chip formationprocess during orthogonal cutting experiments. Information about the microstructuraldevelopment in terms of local microstrains, domain sizes, stacking fault probabilitiesand preferred crystal orientations as well as the spatially resolved stress states withinthe chip formation zone have been obtained from diffraction data. For the workpiecesteel C45E with bcc structure and the fcc aluminium alloy AlCuMg1 the influenceof the cutting parameters were studied through a variation of the undeformed chipthickness, the cutting edge radius and the rake angle. On the basis of the results frombrass alloys CuZn10, CuZn37 and CuZn40 the influence of the stacking fault energyand the influence of a second phase have been investigated for various rake angles.A significant dependence of the maximum stresses on the rake angles was observed.The maximum stresses increase upon a decreasing rake angle. In contrast, the maximumstresses do not show a significant dependence on the undeformed chip thicknessand the cutting edge radius. However, a significant dependence of the stress gradientswas observed. Stronger stress gradients can be observed with smaller undeformedchip thickness, smaller cutting edge radius and higher rake angles. During chip formationa strong decrease in domain sizes and an increase in microstrains can be observedwhich proves a strong strain hardening within the chip.The microstructural gradients show identical behaviour as the macroscopic stresses,exhibiting a clear relation between the microstructural development and the evolvingstress state.A further strain hardening was proven within the observed built-up edges, due to thedecrease in domain sizes and an increase in microstrains. The strain hardening resultsin an increase in the von Mises stresses and the hydrostatic stresses.For the first time, the results of a cutting simulation could be compared to experimentaldata. It was concluded that the appearing differences between experiment andsimulation are mainly addressed to the disregard of the strong microstructural developmentand the resulting strain hardening of the material. Using the shear angle relationof OPITZ and HUCKS it could be shown that the experimental data on the stress statesin the chip formation zone can be used to verify and extend existing chip formationmodels. It is shown that the assumption of a free chip flow could not be hold. Therefore,a extension of the relation considering the normal stresses in direction of the chipflow is necessary for a correct calculation of the shear angle.
000317353 536__ $$0G:(DE-HGF)POF3-6G3$$a6G3 - PETRA III (POF3-622)$$cPOF3-622$$fPOF III$$x0
000317353 650_7 $$xDiss.
000317353 693__ $$0EXP:(DE-H253)P-P07-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P07-20150101$$aPETRA III$$fPETRA Beamline P07$$x0
000317353 7001_ $$0P:(DE-HGF)0$$aReimers, Prof. Dr. W.$$b1$$eThesis advisor
000317353 8564_ $$uhttps://bib-pubdb1.desy.de/record/317353/files/broemmelhoff_katrin_2016_PhD.pdf$$yOpenAccess
000317353 8564_ $$uhttps://bib-pubdb1.desy.de/record/317353/files/broemmelhoff_katrin_2016_PhD.gif?subformat=icon$$xicon$$yOpenAccess
000317353 8564_ $$uhttps://bib-pubdb1.desy.de/record/317353/files/broemmelhoff_katrin_2016_PhD.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000317353 8564_ $$uhttps://bib-pubdb1.desy.de/record/317353/files/broemmelhoff_katrin_2016_PhD.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000317353 8564_ $$uhttps://bib-pubdb1.desy.de/record/317353/files/broemmelhoff_katrin_2016_PhD.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000317353 909CO $$ooai:bib-pubdb1.desy.de:317353$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000317353 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009181$$aExternes Institut$$b0$$kExtern
000317353 9131_ $$0G:(DE-HGF)POF3-622$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G3$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Research on Matter with Brilliant Light Sources$$x0
000317353 9141_ $$y2016
000317353 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000317353 920__ $$lno
000317353 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000317353 980__ $$aphd
000317353 980__ $$aVDB
000317353 980__ $$aUNRESTRICTED
000317353 980__ $$aI:(DE-H253)HAS-User-20120731
000317353 9801_ $$aFullTexts