001     316384
005     20250717104740.0
024 7 _ |a 10.1007/s12274-016-1305-5
|2 doi
024 7 _ |a WOS:000394322300009
|2 WOS
024 7 _ |a openalex:W2553803509
|2 openalex
037 _ _ |a PUBDB-2016-06571
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Meyer, Andreas
|0 P:(DE-H253)PIP1008034
|b 0
|e Corresponding author
245 _ _ |a In-situ GISAXS of block copolymer templated formation of magnetic nanodot arrays and their magnetic properties
260 _ _ |a [S.l.]
|c 2016
|b Tsinghua Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1516100892_16484
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (c) Tsinghua University Press and Springer-Verlag Berlin Heidelberg. Post referee full text in progress (embargo 1 year from 07 November 2016).
520 _ _ |a The fabrication of bit-patterned media (BPM) is crucial for new types of hard disk drives. The development of methods for the production of BPM is progressing rapidly. Conventional lithography reaches the limit regarding lateral resolution, and new routes are needed. In this study, we mainly focus on the dependence of the size and shape of magnetic nanodots on the Ar+-ion etching duration, using silica dots as masks. Two-dimensional (2D) arrays of magnetic nanostructures are created using silica-filled diblock-copolymer micelles as templates. After the self-assembly of the micelles into 2D hexagonal arrays, the polymer shell is removed, and the SiO2 cores are utilized to transform the morphology into a (Co/Pt)2-multilayer via ion etching under normal incidence. The number of preparation steps is kept as low as possible to simplify the formation of the nanostructure arrays. High-resolution in situ grazing-incidence small-angle X-ray scattering (GISAXS) investigations are performed during the Ar+-ion etching to monitor and control the fabrication process. The in situ investigation provides information on how the etching conditions can be improved for further ex situ experiments. The GISAXS patterns are compared with simulations. We observe that the dots change in shape from cylindrical to conical during the etching process. The magnetic behavior is studied by utilizing the magneto-optic Kerr effect. The Co/Pt dots exhibit different magnetic behaviors depending on their size, interparticle distance, and etching time. They show ferromagnetism with an easy axis of magnetization perpendicular to the film. A systematic dependence of the coercivity on the dot size is observed.
536 _ _ |a FS-Proposal: II-20080175 (II-20080175)
|0 G:(DE-H253)II-20080175
|c II-20080175
|x 0
536 _ _ |a 6214 - Nanoscience and Materials for Information Technology (POF3-621)
|0 G:(DE-HGF)POF3-6214
|c POF3-621
|f POF III
|x 1
693 _ _ |a DORIS III
|f DORIS Beamline BW4
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-BW4-20150101
|6 EXP:(DE-H253)D-BW4-20150101
|x 0
700 1 _ |a Franz, Norbert
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Oepen, Hans Peter
|0 P:(DE-H253)PIP1016591
|b 2
700 1 _ |a Perlich, Jan
|0 P:(DE-H253)PIP1007827
|b 3
700 1 _ |a Carbone, Dina
|0 P:(DE-H253)PIP1009503
|b 4
700 1 _ |a Metzger, Hartmut
|0 P:(DE-H253)PIP1012746
|b 5
773 _ _ |a 10.1007/s12274-016-1305-5
|0 PERI:(DE-600)2442216-2
|n 2
|p 456–471
|t Nano research
|v 10
|y 2016
|x 1998-0000
856 4 _ |u http://link.springer.com/article/10.1007%2Fs12274-016-1305-5
856 4 _ |u https://bib-pubdb1.desy.de/record/316384/files/10.1007_s12274-016-1305-5.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/316384/files/10.1007_s12274-016-1305-5.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/316384/files/10.1007_s12274-016-1305-5.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/316384/files/10.1007_s12274-016-1305-5.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/316384/files/10.1007_s12274-016-1305-5.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/316384/files/10.1007_s12274-016-1305-5.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:316384
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1008034
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1016591
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1007827
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1009503
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1012746
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6214
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANO RES : 2015
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-DO-20120731
|k FS-DO
|l FS-Experimentebetreuung DORIS
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-DO-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21