TY - JOUR AU - Kupitz, Christopher AU - Olmos, Jose L. AU - Holl, Mark AU - Tremblay, Lee AU - Pande, Kanupriya AU - Pandey, Suraj AU - Oberthür, Dominik AU - Hunter, Mark AU - Liang, Mengning AU - Aquila, Andrew AU - Tenboer, Jason AU - Calvey, George AU - Katz, Andrea AU - Chen, Yujie AU - Wiedorn, Max O. AU - Knoska, Juraj AU - Meents, Alke AU - Majriani, Valerio AU - Norwood, Tyler AU - Poudyal, Ishwor AU - Grant, Thomas AU - Miller, Mitchell D. AU - Xu, Weijun AU - Tolstikova, Aleksandra AU - Morgan, Andrew AU - Metz, Markus AU - Martin-Gracia, Jose AU - Zook, James D. AU - Roy-Chowdhury, Shatabdi AU - Coe, Jesse AU - Nagaratnam, Nirupa AU - Meza, Domingo AU - Fromme, Raimund AU - Basu, Shibom AU - Frank, Matthias AU - White, Thomas AU - Barty, Anton AU - Bajt, Sasa AU - Yefanov, Oleksandr AU - Chapman, Henry N. AU - Zatsepin, Nadia AU - Nelson, Garrett AU - Weierstall, Uwe AU - Spence, John AU - Schwander, Peter AU - Pollack, Lois AU - Fromme, Petra AU - Ourmazd, Abbas AU - Phillips, George N. AU - Schmidt, Marius TI - Structural enzymology using X-ray free electron lasers JO - Structural dynamics VL - 4 IS - 4 SN - 2329-7778 CY - Melville, NY PB - AIP Publishing LLC M1 - PUBDB-2016-06266 SP - 044003 PY - 2017 AB - Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions. LB - PUB:(DE-HGF)16 UR - <Go to ISI:>//WOS:000402004800003 C6 - pmid:28083542 DO - DOI:10.1063/1.4972069 UR - https://bib-pubdb1.desy.de/record/316054 ER -