001     315907
005     20250730111449.0
024 7 _ |a 10.1021/jacs.6b05609
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a WOS:000391081800014
|2 WOS
024 7 _ |a 10.3204/PUBDB-2016-06146
|2 datacite_doi
024 7 _ |a pmid:27966904
|2 pmid
024 7 _ |a altmetric:14861484
|2 altmetric
024 7 _ |a openalex:W2557328569
|2 openalex
037 _ _ |a PUBDB-2016-06146
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Graen, Timo
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The Low Barrier Hydrogen Bond in the Photoactive Yellow Protein: A Vacuum Artifact Absent in the Crystal and Solution
260 _ _ |a Washington, DC
|c 2016
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1508942414_23650
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a © American Chemical Society
520 _ _ |a There has been considerable debate on the existence of a low-barrier hydrogen bond (LBHB) in the photoactive yellow protein (PYP). The debate was initially triggered by the neutron diffraction study of Yamaguchi et al. ( Proc. Natl. Acad. Sci., U. S. A., 2009, 106, 440−444) who suggested a model in which a neutral Arg52 residue triggers the formation of the LBHB in PYP. Here, we present an alternative model that is consistent within the error margins of the Yamaguchi structure factors. The model explains an increased hydrogen bond length without nuclear quantum effects and for a protonated Arg52. We tested both models by calculations under crystal, solution, and vacuum conditions. Contrary to the common assumption in the field, we found that a single PYP in vacuum does not provide an accurate description of the crystal conditions but instead introduces strong artifacts, which favor a LBHB and a large 1H NMR chemical shift. Our model of the crystal environment was found to stabilize the two Arg52 hydrogen bonds and crystal water positions for the protonated Arg52 residue in free MD simulations and predicted an Arg52 pKa upshift with respect to PYP in solution. The crystal and solution environments resulted in almost identical 1H chemical shifts that agree with NMR solution data. We also calculated the effect of the Arg52 protonation state on the LBHB in 3D nuclear equilibrium density calculations. Only the charged crystal structure in vacuum supports a LBHB if Arg52 is neutral in PYP at the previously reported level of theory ( J. Am. Chem. Soc., 2014, 136, 3542−3552). We attribute the anomalies in the interpretation of the neutron data to a shift of the potential minimum, which does not involve nuclear quantum effects and is transferable beyond the Yamaguchi structure.
536 _ _ |a 6211 - Extreme States of Matter: From Cold Ions to Hot Plasmas (POF3-621)
|0 G:(DE-HGF)POF3-6211
|c POF3-621
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Inhester, Ludger
|0 P:(DE-H253)PIP1023594
|b 1
700 1 _ |a Clemens, Maike
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Grubmüller, Helmut
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Groenhof, Gerrit
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1021/jacs.6b05609
|g p. jacs.6b05609
|0 PERI:(DE-600)1472210-0
|n 51
|p 16620 - 16631
|t Journal of the American Chemical Society
|v 138
|y 2016
|x 1520-5126
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.pdf
856 4 _ |y OpenAccess
|x icon
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.pdf?subformat=pdfa
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.pdf
856 4 _ |y Restricted
|x icon
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.gif?subformat=icon
856 4 _ |y Restricted
|x icon-1440
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.jpg?subformat=icon-1440
856 4 _ |y Restricted
|x icon-180
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.jpg?subformat=icon-180
856 4 _ |y Restricted
|x icon-640
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.jpg?subformat=icon-640
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:315907
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1023594
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1023594
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6211
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-H253)FS-CFEL-3-20120731
|k FS-CFEL-3
|l CFEL-Theory
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CFEL-3-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21