000315907 001__ 315907
000315907 005__ 20250730111449.0
000315907 0247_ $$2doi$$a10.1021/jacs.6b05609
000315907 0247_ $$2ISSN$$a0002-7863
000315907 0247_ $$2ISSN$$a1520-5126
000315907 0247_ $$2WOS$$aWOS:000391081800014
000315907 0247_ $$2datacite_doi$$a10.3204/PUBDB-2016-06146
000315907 0247_ $$2pmid$$apmid:27966904
000315907 0247_ $$2altmetric$$aaltmetric:14861484
000315907 0247_ $$2openalex$$aopenalex:W2557328569
000315907 037__ $$aPUBDB-2016-06146
000315907 041__ $$aEnglish
000315907 082__ $$a540
000315907 1001_ $$0P:(DE-HGF)0$$aGraen, Timo$$b0
000315907 245__ $$aThe Low Barrier Hydrogen Bond in the Photoactive Yellow Protein: A Vacuum Artifact Absent in the Crystal and Solution
000315907 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2016
000315907 3367_ $$2DRIVER$$aarticle
000315907 3367_ $$2DataCite$$aOutput Types/Journal article
000315907 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508942414_23650
000315907 3367_ $$2BibTeX$$aARTICLE
000315907 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000315907 3367_ $$00$$2EndNote$$aJournal Article
000315907 500__ $$a© American Chemical Society
000315907 520__ $$aThere has been considerable debate on the existence of a low-barrier hydrogen bond (LBHB) in the photoactive yellow protein (PYP). The debate was initially triggered by the neutron diffraction study of Yamaguchi et al. ( Proc. Natl. Acad. Sci., U. S. A., 2009, 106, 440−444) who suggested a model in which a neutral Arg52 residue triggers the formation of the LBHB in PYP. Here, we present an alternative model that is consistent within the error margins of the Yamaguchi structure factors. The model explains an increased hydrogen bond length without nuclear quantum effects and for a protonated Arg52. We tested both models by calculations under crystal, solution, and vacuum conditions. Contrary to the common assumption in the field, we found that a single PYP in vacuum does not provide an accurate description of the crystal conditions but instead introduces strong artifacts, which favor a LBHB and a large 1H NMR chemical shift. Our model of the crystal environment was found to stabilize the two Arg52 hydrogen bonds and crystal water positions for the protonated Arg52 residue in free MD simulations and predicted an Arg52 pKa upshift with respect to PYP in solution. The crystal and solution environments resulted in almost identical 1H chemical shifts that agree with NMR solution data. We also calculated the effect of the Arg52 protonation state on the LBHB in 3D nuclear equilibrium density calculations. Only the charged crystal structure in vacuum supports a LBHB if Arg52 is neutral in PYP at the previously reported level of theory ( J. Am. Chem. Soc., 2014, 136, 3542−3552). We attribute the anomalies in the interpretation of the neutron data to a shift of the potential minimum, which does not involve nuclear quantum effects and is transferable beyond the Yamaguchi structure.
000315907 536__ $$0G:(DE-HGF)POF3-6211$$a6211 - Extreme States of Matter: From Cold Ions to Hot Plasmas (POF3-621)$$cPOF3-621$$fPOF III$$x0
000315907 588__ $$aDataset connected to CrossRef
000315907 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000315907 7001_ $$0P:(DE-H253)PIP1023594$$aInhester, Ludger$$b1
000315907 7001_ $$0P:(DE-HGF)0$$aClemens, Maike$$b2
000315907 7001_ $$0P:(DE-HGF)0$$aGrubmüller, Helmut$$b3$$eCorresponding author
000315907 7001_ $$0P:(DE-HGF)0$$aGroenhof, Gerrit$$b4$$eCorresponding author
000315907 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.6b05609$$gp. jacs.6b05609$$n51$$p16620 - 16631$$tJournal of the American Chemical Society$$v138$$x1520-5126$$y2016
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.gif?subformat=icon$$xicon$$yOpenAccess$$zStatID:(DE-HGF)0510
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess$$zStatID:(DE-HGF)0510
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.jpg?subformat=icon-180$$xicon-180$$yOpenAccess$$zStatID:(DE-HGF)0510
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.jpg?subformat=icon-640$$xicon-640$$yOpenAccess$$zStatID:(DE-HGF)0510
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b0560.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.gif?subformat=icon$$xicon$$yRestricted$$zStatID:(DE-HGF)0599
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.jpg?subformat=icon-1440$$xicon-1440$$yRestricted$$zStatID:(DE-HGF)0599
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.jpg?subformat=icon-180$$xicon-180$$yRestricted$$zStatID:(DE-HGF)0599
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.jpg?subformat=icon-640$$xicon-640$$yRestricted$$zStatID:(DE-HGF)0599
000315907 8564_ $$uhttps://bib-pubdb1.desy.de/record/315907/files/jacs.6b05609.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000315907 909CO $$ooai:bib-pubdb1.desy.de:315907$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000315907 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023594$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000315907 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1023594$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000315907 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6211$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000315907 9141_ $$y2016
000315907 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000315907 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000315907 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000315907 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2015
000315907 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2015
000315907 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000315907 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000315907 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000315907 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000315907 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000315907 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000315907 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000315907 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000315907 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000315907 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000315907 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000315907 9201_ $$0I:(DE-H253)FS-CFEL-3-20120731$$kFS-CFEL-3$$lCFEL-Theory$$x0
000315907 980__ $$ajournal
000315907 980__ $$aVDB
000315907 980__ $$aUNRESTRICTED
000315907 980__ $$aI:(DE-H253)FS-CFEL-3-20120731
000315907 9801_ $$aFullTexts