TY - JOUR
AU - van der Schot, Gijs
AU - Svenda, Martin
AU - Maia, Filipe
AU - Hantke, Max F.
AU - DePonte, Daniel P.
AU - Seibert, M. Marvin
AU - Aquila, Andrew
AU - Schulz, Joachim
AU - Kirian, Richard A.
AU - Liang, Mengning
AU - Stellato, Francesco
AU - Bari, Sadia
AU - Iwan, Bianca
AU - Andreasson, Jakob
AU - Timneanu, Nicusor
AU - Bielecki, Johan
AU - Westphal, Daniel
AU - Nunes de Almeida, Francisca
AU - Odić, Duško
AU - Hasse, Dirk
AU - Carlsson, Gunilla H.
AU - Larsson, Daniel S. D.
AU - Barty, Anton
AU - Martin, Andrew V.
AU - Schorb, Sebastian
AU - Bostedt, Christoph
AU - Bozek, John D.
AU - Carron, Sebastian
AU - Ferguson, Ken
AU - Rolles, Daniel
AU - Rudenko, Artem
AU - Epp, Sascha
AU - Foucar, Lutz
AU - Rudek, Benedikt
AU - Erk, Benjamin
AU - Hartmann, Robert
AU - Kimmel, Nils
AU - Holl, Peter
AU - Englert, Lars
AU - Loh, N. Duane
AU - Chapman, Henry N.
AU - Andersson, Inger
AU - Hajdu, Janos
AU - Ekeberg, Tomas
TI - Open data set of live cyanobacterial cells imaged using an X-ray laser
JO - Scientific data
VL - 3
SN - 2052-4463
CY - London
PB - Nature Publ. Group
M1 - PUBDB-2016-04881
SP - 160058
PY - 2016
AB - Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000390225400003
C6 - pmid:27479514
DO - DOI:10.1038/sdata.2016.58
UR - https://bib-pubdb1.desy.de/record/311571
ER -