000311362 001__ 311362
000311362 005__ 20250717104410.0
000311362 0247_ $$2doi$$a10.1038/nature20115
000311362 0247_ $$2ISSN$$a0300-8746
000311362 0247_ $$2ISSN$$a1476-4687
000311362 0247_ $$2WOS$$aWOS:000386670100030
000311362 0247_ $$2arXiv$$aarXiv:1606.07494
000311362 0247_ $$2pmid$$apmid:27808190
000311362 0247_ $$2altmetric$$aaltmetric:13284736
000311362 0247_ $$2inspire$$ainspire:1472091
000311362 0247_ $$2datacite_doi$$a10.3204/PUBDB-2016-04674
000311362 0247_ $$2openalex$$aopenalex:W2548680460
000311362 037__ $$aPUBDB-2016-04674
000311362 041__ $$aEnglish
000311362 082__ $$a070
000311362 0881_ $$aDESY-16-105; arXiv:1606.07494
000311362 088__ $$2DESY$$aDESY-16-105
000311362 088__ $$2arXiv$$aarXiv:1606.07494
000311362 1001_ $$0P:(DE-HGF)0$$aBorsanyi, S.$$b0
000311362 245__ $$aCalculation of the axion mass based on high-temperature lattice quantum chromodynamics
000311362 260__ $$aLondon$$bMacmillan28177$$c2016
000311362 3367_ $$2DRIVER$$aarticle
000311362 3367_ $$2DataCite$$aOutput Types/Journal article
000311362 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport
000311362 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576505546_29635
000311362 3367_ $$2BibTeX$$aARTICLE
000311362 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000311362 3367_ $$00$$2EndNote$$aJournal Article
000311362 520__ $$aUnlike the electroweak sector of the standard model of particle physics, quantum chromodynamics (QCD) is surprisingly symmetric under time reversal. As there is no obvious reason for QCD being so symmetric, this phenomenon poses a theoretical problem, often referred to as the strong CP problem. The most attractive solution for this1 requires the existence of a new particle, the axion$^{2, 3}$—a promising dark-matter candidate. Here we determine the axion mass using lattice QCD, assuming that these particles are the dominant component of dark matter. The key quantities of the calculation are the equation of state of the Universe and the temperature dependence of the topological susceptibility of QCD, a quantity that is notoriously difficult to calculate$^{4, 5, 6, 7, 8}$, especially in the most relevant high-temperature region (up to several gigaelectronvolts). But by splitting the vacuum into different sectors and re-defining the fermionic determinants, its controlled calculation becomes feasible. Thus, our twofold prediction helps most cosmological calculations$^9$ to describe the evolution of the early Universe by using the equation of state, and may be decisive for guiding experiments looking for dark-matter axions. In the next couple of years, it should be possible to confirm or rule out post-inflation axions experimentally, depending on whether the axion mass is found to be as predicted here. Alternatively, in a pre-inflation scenario, our calculation determines the universal axionic angle that corresponds to the initial condition of our Universe.
000311362 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0
000311362 588__ $$aDataset connected to CrossRef
000311362 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000311362 7001_ $$0P:(DE-HGF)0$$aFodor, Z.$$b1
000311362 7001_ $$0P:(DE-HGF)0$$aGuenther, J.$$b2
000311362 7001_ $$0P:(DE-HGF)0$$aKampert, K.-H.$$b3
000311362 7001_ $$0P:(DE-HGF)0$$aKatz, S. D.$$b4
000311362 7001_ $$0P:(DE-H253)PIP1014067$$aKawanai, T.$$b5
000311362 7001_ $$0P:(DE-HGF)0$$aKovacs, T. G.$$b6
000311362 7001_ $$0P:(DE-HGF)0$$aMages, S. W.$$b7
000311362 7001_ $$0P:(DE-HGF)0$$aPasztor, A.$$b8
000311362 7001_ $$0P:(DE-HGF)0$$aPittler, F.$$b9
000311362 7001_ $$0P:(DE-H253)PIP1006281$$aRedondo, J.$$b10$$udesy
000311362 7001_ $$0P:(DE-H253)PIP1001650$$aRingwald, A.$$b11$$eCorresponding author
000311362 7001_ $$0P:(DE-HGF)0$$aSzabo, K. K.$$b12
000311362 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/nature20115$$gVol. 539, no. 7627, p. 69 - 71$$n7627$$p69 - 71$$tNature$$v539$$x1476-4687$$y2016
000311362 7870_ $$0PUBDB-2016-02539$$aBorsanyi, Sz. et.al.$$d2016$$iIsParent$$rDESY 16-105$$tLattice QCD for Cosmology
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/1606.07494.pdf$$yPublished on 2016-11-3. Available in OpenAccess from 2017-05-03.$$zStatID:(DE-HGF)0510
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/nature20115-1.pdf$$yRestricted
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/1606.07494.gif?subformat=icon$$xicon$$yPublished on 2016-11-3. Available in OpenAccess from 2017-05-03.$$zStatID:(DE-HGF)0510
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/1606.07494.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2016-11-3. Available in OpenAccess from 2017-05-03.$$zStatID:(DE-HGF)0510
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/1606.07494.jpg?subformat=icon-180$$xicon-180$$yPublished on 2016-11-3. Available in OpenAccess from 2017-05-03.$$zStatID:(DE-HGF)0510
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/1606.07494.jpg?subformat=icon-640$$xicon-640$$yPublished on 2016-11-3. Available in OpenAccess from 2017-05-03.$$zStatID:(DE-HGF)0510
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/1606.07494.pdf?subformat=pdfa$$xpdfa$$yPublished on 2016-11-3. Available in OpenAccess from 2017-05-03.$$zStatID:(DE-HGF)0510
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/nature20115-1.gif?subformat=icon$$xicon$$yRestricted
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/nature20115-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/nature20115-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/nature20115-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000311362 8564_ $$uhttps://bib-pubdb1.desy.de/record/311362/files/nature20115-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000311362 909CO $$ooai:bib-pubdb1.desy.de:311362$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000311362 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001650$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000311362 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001650$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000311362 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0
000311362 9141_ $$y2016
000311362 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000311362 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000311362 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000311362 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000311362 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000311362 9201_ $$0I:(DE-H253)ALPS-20130318$$kALPS$$lAny Light Particle Search$$x0
000311362 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x1
000311362 980__ $$ajournal
000311362 980__ $$aVDB
000311362 980__ $$aUNRESTRICTED
000311362 980__ $$areport
000311362 980__ $$aI:(DE-H253)ALPS-20130318
000311362 980__ $$aI:(DE-H253)T-20120731
000311362 9801_ $$aFullTexts