000311359 001__ 311359
000311359 005__ 20250730111121.0
000311359 0247_ $$2doi$$a10.1007/JHEP09(2016)097
000311359 0247_ $$2ISSN$$a1029-8479
000311359 0247_ $$2ISSN$$a1126-6708
000311359 0247_ $$2WOS$$aWOS:000383721900006
000311359 0247_ $$2inspire$$ainspire:1468431
000311359 0247_ $$2arXiv$$aarXiv:1606.02771
000311359 0247_ $$2openalex$$aopenalex:W2963518074
000311359 037__ $$aPUBDB-2016-04671
000311359 041__ $$aEnglish
000311359 082__ $$a530
000311359 088__ $$2DESY$$aDESY-16-100
000311359 088__ $$2arXiv$$aarXiv:1606.02771
000311359 0881_ $$aDESY-16-100
000311359 1001_ $$0P:(DE-HGF)0$$aEcheverri, Alejandro Castedo$$b0
000311359 245__ $$aThe effective bootstrap
000311359 260__ $$aBerlin$$bSpringer$$c2016
000311359 3367_ $$2DRIVER$$aarticle
000311359 3367_ $$2DataCite$$aOutput Types/Journal article
000311359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1598014765_3222
000311359 3367_ $$2BibTeX$$aARTICLE
000311359 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000311359 3367_ $$00$$2EndNote$$aJournal Article
000311359 520__ $$aWe study the numerical bounds obtained using a conformal-bootstrap method — advocated in ref. [1] but never implemented so far — where different points in the plane of conformal cross ratios $z$ and $\overline{z}$ are sampled. In contrast to the most used method based on derivatives evaluated at the symmetric point $z = \overline{z} =$ 1/2, we can consistently “integrate out” higher-dimensional operators and get a reduced simpler, and faster to solve, set of bootstrap equations. We test this “effective” bootstrap by studying the 3D Ising and O(n) vector models and bounds on generic 4D CFTs, for which extensive results are already available in the literature. We also determine the scaling dimensions of certain scalar operators in the O(n) vector models, with n = 2, 3, 4, which have not yet been computed using bootstrap techniques.
000311359 536__ $$0G:(DE-HGF)POF3-611$$a611 - Fundamental Particles and Forces (POF3-611)$$cPOF3-611$$fPOF III$$x0
000311359 536__ $$0G:(EU-Grant)267985$$aDAMESYFLA - Electroweak Symmetry Breaking, Flavor and DarkMatter: One Solution for Three Mysteries (267985)$$c267985$$fERC-2010-AdG_20100224$$x1
000311359 588__ $$aDataset connected to CrossRef
000311359 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000311359 7001_ $$0P:(DE-H253)PIP1027472$$avon Harling, Benedict$$b1$$eCorresponding author
000311359 7001_ $$0P:(DE-HGF)0$$aSerone, Marco$$b2
000311359 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP09(2016)097$$gVol. 2016, no. 9, p. 97$$n9$$p097$$tJournal of high energy physics$$v2016$$x1029-8479$$y2016
000311359 7870_ $$0PUBDB-2016-03328$$aEcheverri, Alejandro Castedo et.al.$$d2016$$iIsParent$$rDESY-16-100 ; arXiv:1606.02771$$tThe Effective Bootstrap
000311359 8564_ $$uhttps://bib-pubdb1.desy.de/record/311359/files/art_10.1007_JHEP09%282016%29097.pdf$$yOpenAccess
000311359 8564_ $$uhttps://bib-pubdb1.desy.de/record/311359/files/art_10.1007_JHEP09%282016%29097.gif?subformat=icon$$xicon$$yOpenAccess
000311359 8564_ $$uhttps://bib-pubdb1.desy.de/record/311359/files/art_10.1007_JHEP09%282016%29097.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000311359 8564_ $$uhttps://bib-pubdb1.desy.de/record/311359/files/art_10.1007_JHEP09%282016%29097.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000311359 8564_ $$uhttps://bib-pubdb1.desy.de/record/311359/files/art_10.1007_JHEP09%282016%29097.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000311359 8564_ $$uhttps://bib-pubdb1.desy.de/record/311359/files/art_10.1007_JHEP09%282016%29097.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000311359 909CO $$ooai:bib-pubdb1.desy.de:311359$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000311359 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027472$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000311359 9131_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces$$x0
000311359 9141_ $$y2016
000311359 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000311359 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000311359 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2015
000311359 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2015
000311359 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000311359 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000311359 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000311359 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000311359 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000311359 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000311359 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000311359 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000311359 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000311359 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000311359 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000311359 980__ $$ajournal
000311359 980__ $$aVDB
000311359 980__ $$aUNRESTRICTED
000311359 980__ $$aI:(DE-H253)T-20120731
000311359 9801_ $$aFullTexts