000309470 001__ 309470
000309470 005__ 20250730110734.0
000309470 0247_ $$2doi$$a10.1007/s00023-015-0427-8
000309470 0247_ $$2ISSN$$a1424-0637
000309470 0247_ $$2ISSN$$a1424-0661
000309470 0247_ $$2WOS$$aWOS:000374396400004
000309470 0247_ $$2datacite_doi$$a10.3204/PUBDB-2016-03856
000309470 0247_ $$2inspire$$ainspire:1197352
000309470 0247_ $$2arXiv$$aarXiv:1210.8393
000309470 0247_ $$2openalex$$aopenalex:W2964048523
000309470 037__ $$aPUBDB-2016-03856
000309470 041__ $$aEnglish
000309470 082__ $$a530
000309470 088__ $$2DESY$$aDESY-12-195
000309470 088__ $$2arXiv$$aarXiv:1210.8393
000309470 0881_ $$aDESY-12-195
000309470 1001_ $$0P:(DE-HGF)0$$aKashaev, Rinat$$b0
000309470 245__ $$aA TQFT of Turaev–Viro Type on Shaped Triangulations
000309470 260__ $$aBasel$$bBirkhäuser$$c2016
000309470 3367_ $$2DRIVER$$aarticle
000309470 3367_ $$2DataCite$$aOutput Types/Journal article
000309470 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1598277185_10682
000309470 3367_ $$2BibTeX$$aARTICLE
000309470 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000309470 3367_ $$00$$2EndNote$$aJournal Article
000309470 500__ $$a(c) Springer Basel. Post referee full text in progress (embargo 1 year from 26 July 2015).
000309470 520__ $$aA shaped triangulation is a finite triangulation of an oriented pseudo-three-manifold where each tetrahedron carries dihedral angles of an ideal hyperbolic tetrahedron. To each shaped triangulation, we associate a quantum partition function in the form of an absolutely convergent state integral which is invariant under shaped 3–2 Pachner moves and invariant with respect to shape gauge transformations generated by total dihedral angles around internal edges through the Neumann–Zagier Poisson bracket. Similarly to Turaev–Viro theory, the state variables live on edges of the triangulation but take their values on the whole real axis. The tetrahedral weight functions are composed of three hyperbolic gamma functions in a way that they enjoy a manifest tetrahedral symmetry. We conjecture that for shaped triangulations of closed three-manifolds, our partition function is twice the absolute value squared of the partition function of Techmüller TQFT defined by Andersen and Kashaev. This is similar to the known relationship between the Turaev–Viro and the Witten–Reshetikhin–Turaev invariants of three-manifolds. We also discuss interpretations of our construction in terms of three-dimensional supersymmetric field theories related to triangulated three-dimensional manifolds.
000309470 536__ $$0G:(DE-HGF)POF2-51x$$a51x - Programm Elementarteilchenphysik - Topic unbekannt (POF2-51x)$$cPOF2-51x$$fPOF II$$x0
000309470 588__ $$aDataset connected to CrossRef
000309470 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000309470 7001_ $$0P:(DE-HGF)0$$aLuo, Feng$$b1
000309470 7001_ $$0P:(DE-H253)PIP1015705$$aVartanov, Grigory$$b2$$eCorresponding author
000309470 773__ $$0PERI:(DE-600)2019605-2$$a10.1007/s00023-015-0427-8$$gVol. 17, no. 5, p. 1109 - 1143$$n5$$p1109 - 1143$$tAnnales Henri Poincaré$$v17$$x1424-0661$$y2016
000309470 7870_ $$0PHPPUBDB-23162$$aKashaev, R. et.al.$$d2012$$iIsParent$$rDESY-12-195 ; arXiv:1210.8393$$tA TQFT of Turaev-Viro type on shaped triangulations
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/1210.8393v1.pdf$$yPublished on 2015-07-26. Available in OpenAccess from 2016-07-26.$$zStatID:(DE-HGF)0510
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/art_10.1007_s00023-015-0427-8.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/1210.8393v1.gif?subformat=icon$$xicon$$yPublished on 2015-07-26. Available in OpenAccess from 2016-07-26.$$zStatID:(DE-HGF)0510
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/1210.8393v1.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2015-07-26. Available in OpenAccess from 2016-07-26.$$zStatID:(DE-HGF)0510
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/1210.8393v1.jpg?subformat=icon-180$$xicon-180$$yPublished on 2015-07-26. Available in OpenAccess from 2016-07-26.$$zStatID:(DE-HGF)0510
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/1210.8393v1.jpg?subformat=icon-640$$xicon-640$$yPublished on 2015-07-26. Available in OpenAccess from 2016-07-26.$$zStatID:(DE-HGF)0510
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/1210.8393v1.pdf?subformat=pdfa$$xpdfa$$yPublished on 2015-07-26. Available in OpenAccess from 2016-07-26.$$zStatID:(DE-HGF)0510
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/art_10.1007_s00023-015-0427-8.gif?subformat=icon$$xicon$$yRestricted$$zStatID:(DE-HGF)0599
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/art_10.1007_s00023-015-0427-8.jpg?subformat=icon-1440$$xicon-1440$$yRestricted$$zStatID:(DE-HGF)0599
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/art_10.1007_s00023-015-0427-8.jpg?subformat=icon-180$$xicon-180$$yRestricted$$zStatID:(DE-HGF)0599
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/art_10.1007_s00023-015-0427-8.jpg?subformat=icon-640$$xicon-640$$yRestricted$$zStatID:(DE-HGF)0599
000309470 8564_ $$uhttps://bib-pubdb1.desy.de/record/309470/files/art_10.1007_s00023-015-0427-8.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000309470 909CO $$ooai:bib-pubdb1.desy.de:309470$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000309470 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015705$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000309470 9131_ $$0G:(DE-HGF)POF2-51x$$1G:(DE-HGF)POF2-510$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lElementarteilchenphysik$$vProgramm Elementarteilchenphysik - Topic unbekannt$$x1
000309470 9141_ $$y2016
000309470 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000309470 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000309470 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000309470 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN HENRI POINCARE : 2015
000309470 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000309470 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000309470 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000309470 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000309470 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000309470 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000309470 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000309470 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000309470 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000309470 980__ $$ajournal
000309470 980__ $$aVDB
000309470 980__ $$aUNRESTRICTED
000309470 980__ $$aI:(DE-H253)T-20120731
000309470 9801_ $$aFullTexts