000302090 001__ 302090
000302090 005__ 20230508142516.0
000302090 0247_ $$2doi$$a10.1103/PhysRevB.91.020505
000302090 0247_ $$2ISSN$$a0163-1829
000302090 0247_ $$2ISSN$$a0556-2805
000302090 0247_ $$2ISSN$$a1095-3795
000302090 0247_ $$2ISSN$$a1098-0121
000302090 0247_ $$2ISSN$$a1550-235X
000302090 0247_ $$2ISSN$$a2469-9969
000302090 0247_ $$2WOS$$aWOS:000348677100004
000302090 0247_ $$2altmetric$$aaltmetric:3140864
000302090 037__ $$aPUBDB-2016-03133
000302090 041__ $$aEnglish
000302090 082__ $$a530
000302090 1001_ $$0P:(DE-HGF)0$$aHunt, C. R.$$b0$$eCorresponding author
000302090 245__ $$aTwo Distinct Kinetic Regimes for the Relaxation of Light-Induced Superconductivity in $\mathrm{La_{1.675}Eu_{0.2}Sr_{0.125}CuO_4}$
000302090 260__ $$aCollege Park, Md.$$bAPS$$c2015
000302090 3367_ $$2DRIVER$$aarticle
000302090 3367_ $$2DataCite$$aOutput Types/Journal article
000302090 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1519220494_30938
000302090 3367_ $$2BibTeX$$aARTICLE
000302090 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000302090 3367_ $$00$$2EndNote$$aJournal Article
000302090 520__ $$aWe address the kinetic competition between charge striped order and superconductivity in $La_{1.675}$Eu$_{0.2}$ Sr$_{0.125}$CuO$_4$. Ultrafast optical excitation is tuned to a midinfrared vibrational resonance that destroys charge order and promptly establishes transient coherent interlayer coupling in this material. This effect is evidenced by the appearance of a longitudinal plasma mode reminiscent of a Josephson plasma resonance. We find that coherent interlayer coupling can be generated up to the charge-order transition T$_{CO}$ ≈ 80 K, far above the equilibrium superconducting transition temperature of any single layer cuprate. Two key observations are extracted from the relaxation kinetics of the interlayer coupling. First, the plasma mode relaxes through a collapse of its coherence length and not its density. Second, two distinct kinetic regimes are observed for this relaxation, above and below spin-order transition T$_{SO}$ ≈ 25 K. In particular, the temperature-independent relaxation rate observed below T$_{SO}$ is anomalous and suggests coexistence of superconductivity and stripes rather than competition. Both observations support arguments that a low temperature coherent stripe (or pair density wave) phase suppresses c-axis tunneling by disruptive interference rather than by depleting the condensate.
000302090 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000302090 536__ $$0G:(EU-Grant)319286$$aQ-MAC - Frontiers in Quantum Materials Control (319286)$$c319286$$fERC-2012-SyG$$x1
000302090 542__ $$2Crossref$$i2015-01-29$$uhttp://link.aps.org/licenses/aps-default-license
000302090 588__ $$aDataset connected to CrossRef
000302090 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000302090 7001_ $$0P:(DE-H253)PIP1011602$$aNicoletti, D.$$b1
000302090 7001_ $$0P:(DE-H253)PIP1022121$$aKaiser, S.$$b2
000302090 7001_ $$0P:(DE-HGF)0$$aTakayama, T.$$b3
000302090 7001_ $$0P:(DE-HGF)0$$aTakagi, H.$$b4
000302090 7001_ $$0P:(DE-H253)PIP1006448$$aCavalleri, A.$$b5
000302090 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.91.020505$$bAmerican Physical Society (APS)$$d2015-01-29$$n2$$p020505$$tPhysical Review B$$v91$$x1098-0121$$y2015
000302090 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.91.020505$$gVol. 91, no. 2, p. 020505$$n2$$p020505$$tPhysical review / B$$v91$$x1098-0121$$y2015
000302090 8564_ $$uhttps://bib-pubdb1.desy.de/record/302090/files/10.1103_PhysRevB.91.020505.pdf$$yOpenAccess
000302090 8564_ $$uhttps://bib-pubdb1.desy.de/record/302090/files/10.1103_PhysRevB.91.020505.gif?subformat=icon$$xicon$$yOpenAccess
000302090 8564_ $$uhttps://bib-pubdb1.desy.de/record/302090/files/10.1103_PhysRevB.91.020505.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000302090 8564_ $$uhttps://bib-pubdb1.desy.de/record/302090/files/10.1103_PhysRevB.91.020505.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000302090 8564_ $$uhttps://bib-pubdb1.desy.de/record/302090/files/10.1103_PhysRevB.91.020505.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000302090 8564_ $$uhttps://bib-pubdb1.desy.de/record/302090/files/10.1103_PhysRevB.91.020505.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000302090 909CO $$ooai:bib-pubdb1.desy.de:302090$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000302090 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1011602$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000302090 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1011602$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b1$$kMPG
000302090 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1022121$$aExternes Institut$$b2$$kExtern
000302090 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006448$$aCentre for Free-Electron Laser Science$$b5$$kCFEL
000302090 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1006448$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b5$$kMPG
000302090 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000302090 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000302090 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000302090 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000302090 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000302090 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000302090 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000302090 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000302090 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2014
000302090 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000302090 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000302090 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000302090 915__ $$0StatID:(DE-HGF)0510$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000302090 9201_ $$0I:(DE-H253)MPSD-20120731$$kMPSD$$lForschungsgruppe für strukturelle Dynamik$$x0
000302090 980__ $$ajournal
000302090 980__ $$aVDB
000302090 980__ $$aI:(DE-H253)MPSD-20120731
000302090 980__ $$aUNRESTRICTED
000302090 9801_ $$aFullTexts
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0921-4534(89)90111-1
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.7749
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/375561a0
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.167008
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys178
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.4590
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physc.2007.03.003
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.38.4596
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.104506
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-3697(98)00096-1
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.117001
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.127003
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/11/11/115004
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.100503
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.067001
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i1998-00204-2
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1197294
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature06119
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.241104
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3294
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13875
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.107069
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.63.140502
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3963
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.184516
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.157002
000302090 999C5 $$1M. Born$$2Crossref$$9-- missing cx lookup --$$a10.1017/CBO9781139644181$$y1999
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.092503
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0921-4534(95)00198-0
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.024530
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1912
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01978
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.134510
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(96)01100-3
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.134521
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.047001
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.174529
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjst/e2010-01299-6
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1246310
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.4.031017
000302090 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.060510