000302017 001__ 302017 000302017 005__ 20250730114000.0 000302017 0247_ $$2doi$$a10.3389/fphy.2015.00026 000302017 0247_ $$2WOS$$aWOS:000387176600001 000302017 0247_ $$2altmetric$$aaltmetric:3927814 000302017 0247_ $$2openalex$$aopenalex:W1971391829 000302017 037__ $$aPUBDB-2016-03060 000302017 082__ $$a530 000302017 1001_ $$0P:(DE-HGF)0$$aStoll, Hermann$$b0$$eCorresponding author 000302017 245__ $$aImaging Spin Dynamics on the Nanoscale Using X-Ray Microscopy 000302017 260__ $$aLausanne$$bFrontiers Media$$c2015 000302017 3367_ $$2DRIVER$$aarticle 000302017 3367_ $$2DataCite$$aOutput Types/Journal article 000302017 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1480947592_1456 000302017 3367_ $$2BibTeX$$aARTICLE 000302017 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000302017 3367_ $$00$$2EndNote$$aJournal Article 000302017 520__ $$aThe dynamics of emergent magnetic quasiparticles, such as vortices, domain walls and bubbles are studied by scanning transmission X-ray microscopy (STXM), combining magnetic (XMCD) contrast with about 25nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz) rotating magnetic fields or orthogonal monopolar field pulses in the x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core “down” or “up” state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. Byself-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubble skyrmions. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a directcor relation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using per pendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications. 000302017 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0 000302017 536__ $$0G:(EU-Grant)257707$$aMAGWIRE - Magnetic Nanowires for High Density Non Volatile Memories (257707)$$c257707$$fFP7-ICT-2009-5$$x1 000302017 536__ $$0G:(EU-Grant)608031$$aWALL - Controlling domain wall dynamics for functional devices (608031)$$c608031$$fFP7-PEOPLE-2013-ITN$$x2 000302017 536__ $$0G:(EU-Grant)208162$$aMASPIC - Spin currents in magnetic nanostructures (208162)$$c208162$$fERC-2007-StG$$x3 000302017 588__ $$aDataset connected to CrossRef 000302017 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000302017 7001_ $$0P:(DE-HGF)0$$aNoske, Matthias$$b1 000302017 7001_ $$0P:(DE-HGF)0$$aWeigand, Markus$$b2 000302017 7001_ $$0P:(DE-HGF)0$$aRichter, Kornel$$b3 000302017 7001_ $$0P:(DE-HGF)0$$aKrüger, Benjamin$$b4 000302017 7001_ $$0P:(DE-HGF)0$$aReeve, Robert M.$$b5 000302017 7001_ $$0P:(DE-H253)PIP1031155$$aHänze, Max$$b6 000302017 7001_ $$0P:(DE-H253)PIP1030345$$aAdolff, Christian F.$$b7$$udesy 000302017 7001_ $$0P:(DE-H253)PIP1025704$$aStein, Falk-Ulrich$$b8 000302017 7001_ $$0P:(DE-H253)PIP1016587$$aMeier, Guido$$b9 000302017 7001_ $$0P:(DE-H253)PIP1013840$$aKläui, Mathias$$b10 000302017 7001_ $$0P:(DE-H253)PIP1020351$$aSchütz, Gisela$$b11 000302017 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2015.00026$$gVol. 3$$p.$$tFrontiers in Physics$$v3$$x2296-424X$$y2015 000302017 8564_ $$uhttps://bib-pubdb1.desy.de/record/302017/files/10.3389_fphy.2015.00026.pdf$$yOpenAccess 000302017 8564_ $$uhttps://bib-pubdb1.desy.de/record/302017/files/10.3389_fphy.2015.00026.gif?subformat=icon$$xicon$$yOpenAccess 000302017 8564_ $$uhttps://bib-pubdb1.desy.de/record/302017/files/10.3389_fphy.2015.00026.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000302017 8564_ $$uhttps://bib-pubdb1.desy.de/record/302017/files/10.3389_fphy.2015.00026.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000302017 8564_ $$uhttps://bib-pubdb1.desy.de/record/302017/files/10.3389_fphy.2015.00026.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000302017 8564_ $$uhttps://bib-pubdb1.desy.de/record/302017/files/10.3389_fphy.2015.00026.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000302017 909CO $$ooai:bib-pubdb1.desy.de:302017$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000302017 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1031155$$aCentre for Free-Electron Laser Science$$b6$$kCFEL 000302017 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1031155$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b6$$kMPG 000302017 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1030345$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY 000302017 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030345$$aExternes Institut$$b7$$kExtern 000302017 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1025704$$aCentre for Free-Electron Laser Science$$b8$$kCFEL 000302017 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1025704$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b8$$kMPG 000302017 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1016587$$aCentre for Free-Electron Laser Science$$b9$$kCFEL 000302017 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1016587$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b9$$kMPG 000302017 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013840$$aExternes Institut$$b10$$kExtern 000302017 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020351$$aExternes Institut$$b11$$kExtern 000302017 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000302017 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ 000302017 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000302017 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000302017 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000302017 9201_ $$0I:(DE-H253)MPSD-20120731$$kMPSD$$lForschungsgruppe für strukturelle Dynamik$$x0 000302017 980__ $$ajournal 000302017 980__ $$aVDB 000302017 980__ $$aI:(DE-H253)MPSD-20120731 000302017 980__ $$aUNRESTRICTED 000302017 9801_ $$aFullTexts