001     301795
005     20250730113950.0
024 7 _ |a 10.1103/PhysRevLett.115.187401
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a WOS:000363787600018
|2 WOS
024 7 _ |a pmid:26565494
|2 pmid
024 7 _ |a altmetric:2657351
|2 altmetric
024 7 _ |a openalex:W2173495090
|2 openalex
037 _ _ |a PUBDB-2016-02864
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Singla, R.
|0 P:(DE-H253)PIP1012564
|b 0
|e Corresponding author
245 _ _ |a THz-Frequency Modulation of the Hubbard U in an Organic Mott Insulator
260 _ _ |a College Park, Md.
|c 2015
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1480948339_895
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We use midinfrared pulses with stable carrier-envelope phase offset to drive molecular vibrations in the charge transfer salt ET−F$_2$TCNQ, a prototypical one-dimensional Mott insulator. We find that the Mott gap, which is probed resonantly with 10 fs laser pulses, oscillates with the pump field. This observation reveals that molecular excitations can coherently perturb the electronic on-site interactions (Hubbard U) by changing the local orbital wave function. The gap oscillates at twice the frequency of the vibrational mode, indicating that the molecular distortions couple quadratically to the local charge density.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
536 _ _ |a Q-MAC - Frontiers in Quantum Materials Control (319286)
|0 G:(EU-Grant)319286
|c 319286
|f ERC-2012-SyG
|x 1
588 _ _ |a Dataset connected to CrossRef
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Cotugno, G.
|0 P:(DE-H253)PIP1012176
|b 1
700 1 _ |a Kaiser, S.
|b 2
700 1 _ |a Först, M.
|0 P:(DE-H253)PIP1007487
|b 3
700 1 _ |a Mitrano, M.
|0 P:(DE-H253)PIP1013512
|b 4
700 1 _ |a Liu, H. Y.
|b 5
700 1 _ |a Cartella, A.
|0 P:(DE-H253)PIP1016132
|b 6
700 1 _ |a Manzoni, C.
|0 P:(DE-H253)PIP1009108
|b 7
700 1 _ |a Okamoto, H.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hasegawa, T.
|0 P:(DE-H253)PIP1013839
|b 9
700 1 _ |a Clark, S. R.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Jaksch, D.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Cavalleri, A.
|0 P:(DE-H253)PIP1006448
|b 12
773 _ _ |a 10.1103/PhysRevLett.115.187401
|g Vol. 115, no. 18, p. 187401
|0 PERI:(DE-600)1472655-5
|n 18
|p 187401
|t Physical review letters
|v 115
|y 2015
|x 1079-7114
856 4 _ |u https://bib-pubdb1.desy.de/record/301795/files/PhysRevLett.115.187401.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/301795/files/PhysRevLett.115.187401.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/301795/files/PhysRevLett.115.187401.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/301795/files/PhysRevLett.115.187401.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/301795/files/PhysRevLett.115.187401.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/301795/files/PhysRevLett.115.187401.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:301795
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1012564
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1012176
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 3
|6 P:(DE-H253)PIP1007487
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 3
|6 P:(DE-H253)PIP1007487
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1013512
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 6
|6 P:(DE-H253)PIP1016132
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 6
|6 P:(DE-H253)PIP1016132
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 9
|6 P:(DE-H253)PIP1013839
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 9
|6 P:(DE-H253)PIP1013839
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 12
|6 P:(DE-H253)PIP1006448
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 12
|6 P:(DE-H253)PIP1006448
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2013
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-H253)MPSD-20120731
|k MPSD
|l Forschungsgruppe für strukturelle Dynamik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)MPSD-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21