000301503 001__ 301503
000301503 005__ 20250730110438.0
000301503 0247_ $$2doi$$a10.1007/s00114-016-1383-y
000301503 0247_ $$2ISSN$$a0028-1042
000301503 0247_ $$2ISSN$$a1432-1904
000301503 0247_ $$2WOS$$aWOS:000382121200011
000301503 0247_ $$2pmid$$apmid:27379398
000301503 0247_ $$2altmetric$$aaltmetric:9808369
000301503 0247_ $$2openalex$$aopenalex:W2461291430
000301503 037__ $$aPUBDB-2016-02712
000301503 041__ $$aEnglish
000301503 082__ $$a500
000301503 1001_ $$0P:(DE-H253)PIP1011826$$aZougrou, Ioanna-Maria$$b0
000301503 245__ $$aCa $\mathrm{L_{2,3}}$-Edge XANES and Sr K-Edge EXAFS Study of Hydroxyapatite and Fossil Bone Apatite
000301503 260__ $$aBerlin$$bSpringer8173$$c2016
000301503 3367_ $$2DRIVER$$aarticle
000301503 3367_ $$2DataCite$$aOutput Types/Journal article
000301503 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1519202667_13252
000301503 3367_ $$2BibTeX$$aARTICLE
000301503 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000301503 3367_ $$00$$2EndNote$$aJournal Article
000301503 500__ $$a(c) Springer-Verlag Berlin Heidelberg
000301503 520__ $$aUpon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L$_{2,3}$-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca$_{(1)}$ and Ca${(2)}$ sites in the unit cell gives rise to specific spectral features. Moreover, Ca L$_{2,3}$-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L$_{2,3}$-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca$_{(1)}$ or Ca$_{(2)}$ sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.
000301503 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000301503 536__ $$0G:(EU-Grant)312284$$aCALIPSO - Coordinated Access to Lightsources to Promote Standards and Optimization (312284)$$c312284$$fFP7-INFRASTRUCTURES-2012-1-RTD$$x1
000301503 536__ $$0G:(EU-Grant)226716$$aELISA - European Light Sources Activities - Synchrotrons and Free Electron Lasers (226716)$$c226716$$fFP7-INFRASTRUCTURES-2008-1$$x2
000301503 542__ $$2Crossref$$i2016-07-05$$uhttp://www.springer.com/tdm
000301503 588__ $$aDataset connected to CrossRef
000301503 693__ $$0EXP:(DE-H253)D-C-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-C-20150101$$aDORIS III$$fDORIS Beamline C$$x0
000301503 7001_ $$00000-0002-8059-5539$$aKatsikini, M.$$b1$$eCorresponding author
000301503 7001_ $$0P:(DE-HGF)0$$aBrzhezinskaya, M.$$b2
000301503 7001_ $$0P:(DE-H253)PIP1008797$$aPinakidou, F.$$b3
000301503 7001_ $$0P:(DE-HGF)0$$aPapadopoulou, L.$$b4
000301503 7001_ $$0P:(DE-HGF)0$$aTsoukala, E.$$b5
000301503 7001_ $$0P:(DE-H253)PIP1010744$$aPaloura, Eleni$$b6
000301503 77318 $$2Crossref$$3journal-article$$a10.1007/s00114-016-1383-y$$bSpringer Science and Business Media LLC$$d2016-07-05$$n7-8$$p60$$tThe Science of Nature$$v103$$x0028-1042$$y2016
000301503 773__ $$0PERI:(DE-600)1462930-6$$a10.1007/s00114-016-1383-y$$gVol. 103, no. 7-8, p. 60$$n7-8$$p60$$tThe Science of nature$$v103$$x0028-1042$$y2016
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/10.1007_s00114-016-1383-y.pdf$$yRestricted
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/10.1007_s00114-016-1383-y.gif?subformat=icon$$xicon$$yRestricted
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/10.1007_s00114-016-1383-y.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/10.1007_s00114-016-1383-y.jpg?subformat=icon-180$$xicon-180$$yRestricted
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/10.1007_s00114-016-1383-y.jpg?subformat=icon-640$$xicon-640$$yRestricted
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/10.1007_s00114-016-1383-y.pdf?subformat=pdfa$$xpdfa$$yRestricted
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/Zougrou_The%20Science%20of%20nature_Ca%20L2%2C3-edge%20XANES%20and%20Sr%20K-edge%20EXAFS%20study%20of%20hydroxyapatite%20and%20fossil%20bone%20apatite.pdf$$yPublished on 2016-07-05. Available in OpenAccess from 2017-07-05.$$zStatID:(DE-HGF)0510
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/Zougrou_The%20Science%20of%20nature_Ca%20L2%2C3-edge%20XANES%20and%20Sr%20K-edge%20EXAFS%20study%20of%20hydroxyapatite%20and%20fossil%20bone%20apatite.gif?subformat=icon$$xicon$$yPublished on 2016-07-05. Available in OpenAccess from 2017-07-05.$$zStatID:(DE-HGF)0510
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/Zougrou_The%20Science%20of%20nature_Ca%20L2%2C3-edge%20XANES%20and%20Sr%20K-edge%20EXAFS%20study%20of%20hydroxyapatite%20and%20fossil%20bone%20apatite.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2016-07-05. Available in OpenAccess from 2017-07-05.$$zStatID:(DE-HGF)0510
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/Zougrou_The%20Science%20of%20nature_Ca%20L2%2C3-edge%20XANES%20and%20Sr%20K-edge%20EXAFS%20study%20of%20hydroxyapatite%20and%20fossil%20bone%20apatite.jpg?subformat=icon-180$$xicon-180$$yPublished on 2016-07-05. Available in OpenAccess from 2017-07-05.$$zStatID:(DE-HGF)0510
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/Zougrou_The%20Science%20of%20nature_Ca%20L2%2C3-edge%20XANES%20and%20Sr%20K-edge%20EXAFS%20study%20of%20hydroxyapatite%20and%20fossil%20bone%20apatite.jpg?subformat=icon-640$$xicon-640$$yPublished on 2016-07-05. Available in OpenAccess from 2017-07-05.$$zStatID:(DE-HGF)0510
000301503 8564_ $$uhttps://bib-pubdb1.desy.de/record/301503/files/Zougrou_The%20Science%20of%20nature_Ca%20L2%2C3-edge%20XANES%20and%20Sr%20K-edge%20EXAFS%20study%20of%20hydroxyapatite%20and%20fossil%20bone%20apatite.pdf?subformat=pdfa$$xpdfa$$yPublished on 2016-07-05. Available in OpenAccess from 2017-07-05.$$zStatID:(DE-HGF)0510
000301503 909CO $$ooai:bib-pubdb1.desy.de:301503$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000301503 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011826$$aExternes Institut$$b0$$kExtern
000301503 9101_ $$0I:(DE-HGF)0$$60000-0002-8059-5539$$aExternes Institut$$b1$$kExtern
000301503 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternes Institut$$b2$$kExtern
000301503 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008797$$aExternes Institut$$b3$$kExtern
000301503 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternes Institut$$b4$$kExtern
000301503 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternes Institut$$b5$$kExtern
000301503 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010744$$aExternes Institut$$b6$$kExtern
000301503 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000301503 9141_ $$y2016
000301503 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000301503 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000301503 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000301503 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000301503 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURWISSENSCHAFTEN : 2014
000301503 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000301503 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000301503 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000301503 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000301503 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000301503 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000301503 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000301503 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000301503 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000301503 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000301503 980__ $$ajournal
000301503 980__ $$aVDB
000301503 980__ $$aI:(DE-H253)HAS-User-20120731
000301503 980__ $$aUNRESTRICTED
000301503 9801_ $$aFullTexts
000301503 999C5 $$1AL Ankudinov$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.7565$$p7565 -$$tPhys Rev B$$uAnkudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58:7565–7576. doi: 10.1103/PhysRevB.58.7565$$v58$$y1998
000301503 999C5 $$1A Bartsiokas$$2Crossref$$9-- missing cx lookup --$$a10.1016/0305-4403(92)90007-P$$p63 -$$tJ Archaeol Sci$$uBartsiokas A, Middleton AP (1992) Characterization and dating of recent and fossil bone by X-ray diffraction. J Archaeol Sci 19:63–72. doi: 10.1016/0305-4403(92)90007-P$$v19$$y1992
000301503 999C5 $$1F Berna$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jas.2003.12.003$$p867 -$$tJ Archaeol Sci$$uBerna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31:867–882. doi: 10.1016/j.jas.2003.12.003$$v31$$y2004
000301503 999C5 $$1E Beniash$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2009.02.001$$p133 -$$tJ Struct Biol$$uBeniash E, Metzler RA, Lam RSK, Gilbert PUPA (2009) Transient amorphous calcium phosphate in forming enamel. J Struct Biol 166:133–143. doi: 10.1016/j.jsb.2009.02.001$$v166$$y2009
000301503 999C5 $$1K Benzerara$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1472-4677.2004.00039.x$$p249 -$$tGeobiology$$uBenzerara K, Yoon TH, Tyliszczak T, Constanz B, Spormann AM, Brown GE Jr (2004) Scanning transmission X-ray microscopy study of microbial calcification. Geobiology 2:249–259. doi: 10.1111/j.1472-4677.2004.00039.x$$v2$$y2004
000301503 999C5 $$1A Bigi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ica.2006.07.074$$p1009 -$$tInorg Chim Acta$$uBigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360:1009–1016. doi: 10.1016/j.ica.2006.07.074$$v360$$y2007
000301503 999C5 $$1MJ Collins$$2Crossref$$9-- missing cx lookup --$$a10.1111/1475-4754.t01-1-00071$$p383 -$$tArchaeometry$$uCollins MJ, Nielsen-Marsh CM, Hiller J, Smith CI, Roberts JP, Prigodich RV, Wess TJ, Csapò J, Millard AR, Turner-Walker G (2002) The survival of organic matter in bone: a review. Archaeometry 44:383–394. doi: 10.1111/1475-4754.t01-1-00071$$v44$$y2002
000301503 999C5 $$1PG Davis$$2Crossref$$9-- missing cx lookup --$$a10.1002/(SICI)1099-1212(199707/08)7:4<388::AID-OA357>3.0.CO;2-H$$p388 -$$tInt J Osteoarchaeol$$uDavis PG (1997) The bioerosion of bird bones. Int J Osteoarchaeol 7:388–401. doi: 10.1002/(SICI)1099-1212(199707/08)7:4<388::AID-OA357>3.0.CO;2-H$$v7$$y1997
000301503 999C5 $$1FMF Groot De$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.41.928$$p928 -$$tPhys Rev B$$uDe Groot FMF, Fuggle JC, Thole BT, Sawatzky GA (1990) L3,2 x-ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+, and Ti4+ in Oh (octahedral) symmetry. Phys Rev B 41:928–937. doi: 10.1103/PhysRevB.41.928$$v41$$y1990
000301503 999C5 $$1M Dumont$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.palaeo.2011.06.021$$p108 -$$tPalaeogeogr Palaeoclimatol Palaeoecol$$uDumont M, Kostka A, Sander PM, Borbely A, Kaysser-Pyzalla A (2011) Size and size distribution of apatite crystals in sauropod fossil bones. Palaeogeogr Palaeoclimatol Palaeoecol 310:108–116. doi: 10.1016/j.palaeo.2011.06.021$$v310$$y2011
000301503 999C5 $$1ME Fleet$$2Crossref$$9-- missing cx lookup --$$a10.2138/am.2009.3228$$p1235 -$$tAm Mineral$$uFleet ME, Liu X (2009) Calcium L2,3-edge XANES of carbonates, carbonate apatite, and oldhamite (CaS). Am Mineral 94:1235–1241. doi: 10.2138/am.2009.3228$$v94$$y2009
000301503 999C5 $$1CJ Hackett$$2Crossref$$9-- missing cx lookup --$$a10.1177/002580248102100403$$p243 -$$tMed Sci Law$$uHackett CJ (1981) Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law 21:243–265. doi: 10.1177/002580248102100403$$v21$$y1981
000301503 999C5 $$1JE Harries$$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/19/34/022$$p6859 -$$tJ Phys C Solid State$$uHarries JE, Hukins DWL, Hasnain SS (1986) Analysis of the EXAFS spectrum of hydroxyapatite. J Phys C Solid State 19:6859–6872. doi: 10.1088/0022-3719/19/34/022$$v19$$y1986
000301503 999C5 $$1REM Hedges$$2Crossref$$9-- missing cx lookup --$$a10.1111/1475-4754.00064$$p319 -$$tArchaeometry$$uHedges REM (2002) Bone diagenesis: an overview of processes. Archaeometry 4:319–328. doi: 10.1111/1475-4754.00064$$v4$$y2002
000301503 999C5 $$1REM Hedges$$2Crossref$$9-- missing cx lookup --$$a10.1006/jasc.1995.0022$$p201 -$$tJ Archaeol Sci$$uHedges REM, Millard AR, Pike AWG (1995) Measurements and relationships of diagenetic alteration of bone from three archaeological sites. J Archaeol Sci 22:201–209. doi: 10.1006/jasc.1995.0022$$v22$$y1995
000301503 999C5 $$1JM Hughes$$2Crossref$$uHughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH, and Cl apatites. Am Mineral 74:870–876$$y1989
000301503 999C5 $$1MME Jans$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-540-77598-0_20$$p397 -$$uJans MME (2008) Microbial bioerosion of bone—a review. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp. 397–413. doi: 10.1007/978-3-540-77598-0_20$$y2008
000301503 999C5 $$1SW Keenan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.chemgeo.2015.08.005$$p18 -$$tChem Geol$$uKeenan SW, Engel AS, Roy A, Bovenkamp-Langlois GL (2015) Evaluating the consequences of diagenesis and fossilization on bioapatite lattice structure and composition. Chem Geol 413:18–27. doi: 10.1016/j.chemgeo.2015.08.005$$v413$$y2015
000301503 999C5 $$1MJ Kohn$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.gca.2008.05.045$$p3758 -$$tGeochim Cosmochim Acta$$uKohn MJ (2008) Models of diffusion-limited uptake of trace elements in fossils and rates of fossilization. Geochim Cosmochim Acta 72:3758–3770. doi: 10.1016/j.gca.2008.05.045$$v72$$y2008
000301503 999C5 $$1RZ LeGeros$$2Crossref$$9-- missing cx lookup --$$a10.4028/www.scientific.net/KEM.309-311.697$$p697 -$$tKey Eng Mater$$uLeGeros RZ, Mijares D, Yao F, LeGeros JP, Bromage T, La V, Xi Q, Tannous S, Kijkowska R (2006) Consequences of fluoride incorporation on properties of apatites. Key Eng Mater 309-311:697–700. doi: 10.4028/www.scientific.net/KEM.309-311.697$$v309-311$$y2006
000301503 999C5 $$1RZ LeGeros$$2Crossref$$9-- missing cx lookup --$$a10.1159/000260696$$p419 -$$tCaries Res$$uLeGeros RZ, Tung MS (1983) Chemical stability of carbonate- and fluoride-containing apatites. Caries Res 17:419–429. doi: 10.1159/000260696$$v17$$y1983
000301503 999C5 $$1ZY Li$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biomaterials.2006.11.001$$p1452 -$$tBiomaterials$$uLi ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, Cheung KMC, Luk KDK, Lu WW (2007) Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28:1452–1460. doi: 10.1016/j.biomaterials.2006.11.001$$v28$$y2007
000301503 999C5 $$1AR Millard$$2Crossref$$9-- missing cx lookup --$$a10.1006/jasc.1995.0025$$p239 -$$tJ Archaeol Sci$$uMillard AR, Hedges REM (1995) The role of the environment in uranium uptake by buried bone. J Archaeol Sci 22:239–250. doi: 10.1006/jasc.1995.0025$$v22$$y1995
000301503 999C5 $$1SL Molodtsov$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00339-008-4916-1$$p501 -$$tAppl Phys A Mater Sci Process$$uMolodtsov SL, Fedoseenko SI, Vyalikh DV, Iossifov IE, Follath R, Gorovikov SA, Brzhezinskaya MM, Dedkov YS, Puettner R, Schmidt J-S, Adamchuk VK, Gudat W, Kaindl G (2009) High-resolution Russian-German beamline at BESSY. Appl Phys A Mater Sci Process 94:501–505. doi: 10.1007/s00339-008-4916-1$$v94$$y2009
000301503 999C5 $$1SJ Naftel$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0909049500019555$$p255 -$$tJ Synchrotron Radiat$$uNaftel SJ, Sham TK, Yiu YM, Yates BW (2001) Calcium L-edge XANES study of some calcium compounds. J Synchrotron Radiat 8:255–257. doi: 10.1107/S0909049500019555$$v8$$y2001
000301503 999C5 $$1M Newville$$2Crossref$$9-- missing cx lookup --$$a10.1016/0921-4526(94)00655-F$$p154 -$$tPhysica B$$uNewville M, Ravel B, Haskel D, Rehr JJ, Stern EA, Yacoby Y (1995) Analysis of multiple-scattering XAFS data using theoretical standards. Physica B 208–209:154–156. doi: 10.1016/0921-4526(94)00655-F$$v208–209$$y1995
000301503 999C5 $$1MD O’Donnell$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actbio.2008.04.018$$p1455 -$$tActa Biomater$$uO’Donnell MD, Fredholm Y, de Rouffignac A, Hill RG (2008) Structural analysis of a series of strontium-substituted apatites. Acta Biomater 4:1455–1464. doi: 10.1016/j.actbio.2008.04.018$$v4$$y2008
000301503 999C5 $$1FD Pate$$2Crossref$$9-- missing cx lookup --$$a10.1016/0883-2927(89)90034-6$$p303 -$$tAppl Geochem$$uPate FD, Hutton JT, Norrish K (1989) Ionic exchange between soil solution and bone: toward a predictive model. Appl Geochem 4:303–316. doi: 10.1016/0883-2927(89)90034-6$$v4$$y1989
000301503 999C5 $$1HU Pfretzschner$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.crpv.2004.07.006$$p605 -$$tC R Paleovol$$uPfretzschner HU (2004) Fossilization of Haversian bone in aquatic environments. C R Paleovol 3:605–616. doi: 10.1016/j.crpv.2004.07.006$$v3$$y2004
000301503 999C5 $$1Y Politi$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1102289$$p1161 -$$tScience$$uPoliti Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164. doi: 10.1126/science.1102289$$v306$$y2004
000301503 999C5 $$1Y Politi$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0806604105$$p17362 -$$tProc Natl Acad Sci U S A$$uPoliti Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PUPA (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci U S A 105:17362–17366. doi: 10.1073/pnas.0806604105$$v105$$y2008
000301503 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2113/gscanmin.38.4.839$$uRakovan JF, Hughes JM (2000) Strontium in the apatite structure: strontian fluorapatite and belovite-(Ce). Can Mineral 38:839–845. doi: 10.2113/gscanmin.38.4.839
000301503 999C5 $$1I Reiche$$2Crossref$$9-- missing cx lookup --$$a10.1111/1475-4754.00077$$p447 -$$tArchaeometry$$uReiche I, Vignaud C, Menu M (2002) The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy. Archaeometry 44:447–459. doi: 10.1111/1475-4754.00077$$v44$$y2002
000301503 999C5 $$1P Rez$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp203057y$$p11193 -$$tJ Phys Chem B$$uRez P, Blackwell A (2011) Ca L23 spectrum in amorphous and crystalline phases of calcium carbonate. J Phys Chem B 115:11193–11198. doi: 10.1021/jp203057y$$v115$$y2011
000301503 999C5 $$1H Rodríguez$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0734-9750(99)00014-2$$p319 -$$tBiotechnol Adv$$uRodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi: 10.1016/S0734-9750(99)00014-2$$v17$$y1999
000301503 999C5 $$1CI Smith$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jas.2006.11.006$$p1485 -$$tJ Archaeol Sci$$uSmith CI, Nielsen-Marsh CM, Jans MME, Collins MJ (2007) Bone diagenesis in the European Holocene I: patterns and mechanisms. J Archaeol Sci 34:1485–1493. doi: 10.1016/j.jas.2006.11.006$$v34$$y2007
000301503 999C5 $$1Ε Stavitski$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.micron.2010.06.005$$p687 -$$tMicron$$uStavitski Ε, de Groot FMF (2010) The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41:687–694. doi: 10.1016/j.micron.2010.06.005$$v41$$y2010
000301503 999C5 $$1J Terra$$2Crossref$$9-- missing cx lookup --$$a10.1039/B802841A$$p568 -$$tPhys Chem Chem Phys$$uTerra J, Dourado ER, Eon JG, Ellis DE, Gonzalez G, Malta Rossi A (2009) The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Phys Chem Chem Phys 11:568–577. doi: 10.1039/B802841A$$v11$$y2009
000301503 999C5 $$1CN Trueman$$2Crossref$$9-- missing cx lookup --$$a10.7208/chicago/9780226723730.003.0007$$p397 -$$uTrueman CN (2008) Trace element geochemistry of bonebeds. In: Rogers RR, Eberth DA, Fiorillo AR (eds) Bonebeds: genesis, analysis and Paleobiological significance. University of Chicago Press, Chicago, pp. 397–436. doi: 10.7208/chicago/9780226723730.003.0007$$y2008
000301503 999C5 $$1CNG Trueman$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jas.2003.11.003$$p721 -$$tJ Archaeol Sci$$uTrueman CNG, Behrensmeyer AK, Tuross N, Weiner S (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739. doi: 10.1016/j.jas.2003.11.003$$v31$$y2004
000301503 999C5 $$1E Tsoukala$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jhevol.2007.10.011$$p448 -$$tJ Hum Evol$$uTsoukala E, Bartsiokas A (2008) New Mesopithecus pentelicus specimens from Kryopigi, Macedonia, Greece. J Hum Evol 54:448–451. doi: 10.1016/j.jhevol.2007.10.011$$v54$$y2008
000301503 999C5 $$1G Turner-Walker$$2Crossref$$9-- missing cx lookup --$$a10.1002/oa.642$$p407 -$$tInt J Osteoarchaeol$$uTurner-Walker G, Nielsen-Marsh CM, Syversen U, Kars H, Collins MJ (2002) Sub-micron spongiform porosity is the major ultra-structural alteration occurring in archaeological bone. Int J Osteoarchaeol 12:407–414. doi: 10.1002/oa.642$$v12$$y2002
000301503 999C5 $$1N Tuross$$2Crossref$$9-- missing cx lookup --$$a10.1016/0883-2927(89)90027-9$$p261 -$$tAppl Geochem$$uTuross N, Behrensmeyer AK, Eanes ED, Fisher LW, Hare PE (1989) Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones. Appl Geochem 4:261–270. doi: 10.1016/0883-2927(89)90027-9$$v4$$y1989
000301503 999C5 $$1B Vekemans$$2Crossref$$9-- missing cx lookup --$$a10.1002/xrs.1300230609$$p278 -$$tX-Ray Spectrom$$uVekemans B, Janssens K, Vincze L, Adams F, Van Espen P (1994) Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom 23:278–285. doi: 10.1002/xrs.1300230609$$v23$$y1994
000301503 999C5 $$1B Wopenka$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.msec.2005.01.008$$p131 -$$tMater Sci Eng C$$uWopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143. doi: 10.1016/j.msec.2005.01.008$$v25$$y2005
000301503 999C5 $$1J Zeglinski$$2Crossref$$9-- missing cx lookup --$$a10.1039/C2CP23163H$$p3435 -$$tPhys Chem Chem Phys$$uZeglinski J, Nolan M, Bredol M, Schatte A, Tofail SAM (2012) Unravelling the specific site in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analysis. Phys Chem Chem Phys 14:3435–3443. doi: 10.1039/C2CP23163H$$v14$$y2012
000301503 999C5 $$1IM Zougrou$$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/712/1/012090$$p1 -$$tJ Phys Conf Ser$$uZougrou IM, Katsikini M, Pinakidou F, Brzhezinskaya M, Papadopoulou L, Vlachos E, Tsoukala E, Paloura EC (2016) Characterization of fossil remains using XRF, XPS and XAFS spectroscopies. J Phys Conf Ser 712(012090):1–4. doi: 10.1088/1742-6596/712/1/012090$$v712$$y2016
000301503 999C5 $$1IM Zougrou$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577513025228$$p149 -$$tJ Synchrotron Radiat$$uZougrou IM, Katsikini M, Pinakidou F, Paloura EC, Papadopoulou L, Tsoukala E (2014) Study of fossil bones by synchrotron radiation micro-spectroscopic techniques and scanning electron microscopy. J Synchrotron Radiat 21:149–160. doi: 10.1107/S1600577513025228$$v21$$y2014