001     300993
005     20211110134506.0
024 7 _ |a arXiv:1606.07768
|2 arXiv
024 7 _ |a altmetric:9057159
|2 altmetric
024 7 _ |a inspire:1472354
|2 inspire
037 _ _ |a PUBDB-2016-02550
041 _ _ |a English
088 1 _ |a DESY-16-104; IFT-UAM-CSIC-16-053; arXiv:1606.07768
088 _ _ |a DESY-16-104
|2 DESY
088 _ _ |a IFT-UAM-CSIC-16-053
|2 Other
088 _ _ |a arXiv:1606.07768
|2 arXiv
100 1 _ |a Pedro, Francisco Gil
|b 0
245 _ _ |a Non-Equilibrium Random Matrix Theory : Transition Probabilities
260 _ _ |c 2016
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1480944870_895
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a Report
|0 PUB:(DE-HGF)29
|2 PUB:(DE-HGF)
|m report
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a In this letter we present an analytic method for calculating the transition probability between two random Gaussian matrices with given eigenvalue spectra in the context of Dyson Brownian motion. We show that in the Coulomb gas language, in large $N$ limit, memory of the initial state is preserved in the form of a universal linear potential acting on the eigenvalues. We compute the likelihood of any given transition as a function of time, showing that as memory of the initial state is lost, transition probabilities converge to those of the static ensemble.
536 _ _ |0 G:(DE-HGF)POF3-611
|c POF3-611
|f POF III
|x 0
|a 611 - Fundamental Particles and Forces (POF3-611)
536 _ _ |a SPLE - String Phenomenology in the LHC Era (320421)
|0 G:(EU-Grant)320421
|c 320421
|f ERC-2012-ADG_20120216
|x 1
536 _ _ |a STRINGFLATION - Inflation in String Theory - Connecting Quantum Gravity with Observations (647995)
|0 G:(EU-Grant)647995
|c 647995
|f ERC-2014-CoG
|x 2
588 _ _ |a Dataset connected to INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Westphal, Alexander
|0 P:(DE-H253)PIP1013212
|b 1
|e Corresponding author
|u desy
856 4 _ |u https://bib-pubdb1.desy.de/record/300993/files/1606.07768v1.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/300993/files/1606.07768v1.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/300993/files/1606.07768v1.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/300993/files/1606.07768v1.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/300993/files/1606.07768v1.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/300993/files/1606.07768v1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:300993
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1013212
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Universum
|1 G:(DE-HGF)POF3-610
|0 G:(DE-HGF)POF3-611
|2 G:(DE-HGF)POF3-600
|x 0
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a report
980 _ _ |a I:(DE-H253)T-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21