001     293123
005     20250717105559.0
024 7 _ |a 10.1016/j.msea.2015.06.095
|2 doi
024 7 _ |a 0921-5093
|2 ISSN
024 7 _ |a 1873-4936
|2 ISSN
024 7 _ |a WOS:000359167300015
|2 WOS
024 7 _ |a openalex:W811742765
|2 openalex
037 _ _ |a PUBDB-2016-00288
082 _ _ |a 600
100 1 _ |a Ciovati, G.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Mechanical properties of niobium radio-frequency cavities
260 _ _ |a Amsterdam
|c 2015
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467216232_11694
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (c) Elsevier B.V. Post referee full text in progress (embargo 1 year from 2 July 2015).
520 _ _ |a Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5 GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium.
536 _ _ |a 631 - Accelerator R & D (POF3-631)
|0 G:(DE-HGF)POF3-631
|c POF3-631
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Dhakal, P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Matalevich, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Myneni, G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Iversen, J.
|0 P:(DE-H253)PIP1002346
|b 4
700 1 _ |a Matheisen, A.
|0 P:(DE-H253)PIP1000250
|b 5
700 1 _ |a Singer, W.
|0 P:(DE-H253)PIP1003074
|b 6
700 1 _ |a Schmidt, Andreas
|0 P:(DE-H253)PIP1000365
|b 7
773 _ _ |a 10.1016/j.msea.2015.06.095
|g Vol. 642, p. 117 - 127
|0 PERI:(DE-600)2012154-4
|p 117 - 127
|t Materials science and engineering / A
|v 642
|y 2015
|x 0921-5093
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:293123
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1002346
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1000250
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1003074
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1000365
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k >Extern
|b 7
|6 P:(DE-H253)PIP1000365
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-631
|2 G:(DE-HGF)POF3-600
|v Accelerator R & D
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAT SCI ENG A-STRUCT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-H253)MHF-sl-20120731
|k MHF-sl
|l HF-Technik Supraleitung
|x 0
920 1 _ |0 I:(DE-H253)MKS-20120806
|k MKS
|l Kryogenik und Supraleitung
|x 1
920 1 _ |0 I:(DE-H253)MPL-20120731
|k MPL
|l Planung
|x 2
920 1 _ |0 I:(DE-H253)Eur_XFEL-20120731
|k Eur.XFEL
|l European XFEL
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)MHF-sl-20120731
980 _ _ |a I:(DE-H253)MKS-20120806
980 _ _ |a I:(DE-H253)MPL-20120731
980 _ _ |a I:(DE-H253)Eur_XFEL-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21