000293123 001__ 293123 000293123 005__ 20250717105559.0 000293123 0247_ $$2doi$$a10.1016/j.msea.2015.06.095 000293123 0247_ $$2ISSN$$a0921-5093 000293123 0247_ $$2ISSN$$a1873-4936 000293123 0247_ $$2WOS$$aWOS:000359167300015 000293123 0247_ $$2openalex$$aopenalex:W811742765 000293123 037__ $$aPUBDB-2016-00288 000293123 082__ $$a600 000293123 1001_ $$0P:(DE-HGF)0$$aCiovati, G.$$b0$$eCorresponding author 000293123 245__ $$aMechanical properties of niobium radio-frequency cavities 000293123 260__ $$aAmsterdam$$bElsevier$$c2015 000293123 3367_ $$2DRIVER$$aarticle 000293123 3367_ $$2DataCite$$aOutput Types/Journal article 000293123 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467216232_11694 000293123 3367_ $$2BibTeX$$aARTICLE 000293123 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000293123 3367_ $$00$$2EndNote$$aJournal Article 000293123 500__ $$a(c) Elsevier B.V. Post referee full text in progress (embargo 1 year from 2 July 2015). 000293123 520__ $$aRadio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5 GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium. 000293123 536__ $$0G:(DE-HGF)POF3-631$$a631 - Accelerator R & D (POF3-631)$$cPOF3-631$$fPOF III$$x0 000293123 588__ $$aDataset connected to CrossRef 000293123 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000293123 7001_ $$0P:(DE-HGF)0$$aDhakal, P.$$b1 000293123 7001_ $$0P:(DE-HGF)0$$aMatalevich, J.$$b2 000293123 7001_ $$0P:(DE-HGF)0$$aMyneni, G.$$b3 000293123 7001_ $$0P:(DE-H253)PIP1002346$$aIversen, J.$$b4 000293123 7001_ $$0P:(DE-H253)PIP1000250$$aMatheisen, A.$$b5 000293123 7001_ $$0P:(DE-H253)PIP1003074$$aSinger, W.$$b6 000293123 7001_ $$0P:(DE-H253)PIP1000365$$aSchmidt, Andreas$$b7 000293123 773__ $$0PERI:(DE-600)2012154-4$$a10.1016/j.msea.2015.06.095$$gVol. 642, p. 117 - 127$$p117 - 127$$tMaterials science and engineering / A$$v642$$x0921-5093$$y2015 000293123 909CO $$ooai:bib-pubdb1.desy.de:293123$$pVDB 000293123 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002346$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY 000293123 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000250$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000293123 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003074$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY 000293123 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1000365$$aEuropean XFEL$$b7$$kXFEL.EU 000293123 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1000365$$aExternes Institut$$b7$$k>Extern 000293123 9131_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x0 000293123 9141_ $$y2015 000293123 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAT SCI ENG A-STRUCT : 2014 000293123 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000293123 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000293123 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000293123 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000293123 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000293123 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000293123 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000293123 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000293123 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000293123 9201_ $$0I:(DE-H253)MHF-sl-20120731$$kMHF-sl$$lHF-Technik Supraleitung$$x0 000293123 9201_ $$0I:(DE-H253)MKS-20120806$$kMKS$$lKryogenik und Supraleitung$$x1 000293123 9201_ $$0I:(DE-H253)MPL-20120731$$kMPL$$lPlanung$$x2 000293123 9201_ $$0I:(DE-H253)Eur_XFEL-20120731$$kEur.XFEL$$lEuropean XFEL$$x3 000293123 980__ $$ajournal 000293123 980__ $$aVDB 000293123 980__ $$aI:(DE-H253)MHF-sl-20120731 000293123 980__ $$aI:(DE-H253)MKS-20120806 000293123 980__ $$aI:(DE-H253)MPL-20120731 000293123 980__ $$aI:(DE-H253)Eur_XFEL-20120731 000293123 980__ $$aUNRESTRICTED