000293123 001__ 293123
000293123 005__ 20250717105559.0
000293123 0247_ $$2doi$$a10.1016/j.msea.2015.06.095
000293123 0247_ $$2ISSN$$a0921-5093
000293123 0247_ $$2ISSN$$a1873-4936
000293123 0247_ $$2WOS$$aWOS:000359167300015
000293123 0247_ $$2openalex$$aopenalex:W811742765
000293123 037__ $$aPUBDB-2016-00288
000293123 082__ $$a600
000293123 1001_ $$0P:(DE-HGF)0$$aCiovati, G.$$b0$$eCorresponding author
000293123 245__ $$aMechanical properties of niobium radio-frequency cavities
000293123 260__ $$aAmsterdam$$bElsevier$$c2015
000293123 3367_ $$2DRIVER$$aarticle
000293123 3367_ $$2DataCite$$aOutput Types/Journal article
000293123 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467216232_11694
000293123 3367_ $$2BibTeX$$aARTICLE
000293123 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000293123 3367_ $$00$$2EndNote$$aJournal Article
000293123 500__ $$a(c) Elsevier B.V. Post referee full text in progress (embargo 1 year from 2 July 2015).
000293123 520__ $$aRadio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5 GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium.
000293123 536__ $$0G:(DE-HGF)POF3-631$$a631 - Accelerator R & D (POF3-631)$$cPOF3-631$$fPOF III$$x0
000293123 588__ $$aDataset connected to CrossRef
000293123 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000293123 7001_ $$0P:(DE-HGF)0$$aDhakal, P.$$b1
000293123 7001_ $$0P:(DE-HGF)0$$aMatalevich, J.$$b2
000293123 7001_ $$0P:(DE-HGF)0$$aMyneni, G.$$b3
000293123 7001_ $$0P:(DE-H253)PIP1002346$$aIversen, J.$$b4
000293123 7001_ $$0P:(DE-H253)PIP1000250$$aMatheisen, A.$$b5
000293123 7001_ $$0P:(DE-H253)PIP1003074$$aSinger, W.$$b6
000293123 7001_ $$0P:(DE-H253)PIP1000365$$aSchmidt, Andreas$$b7
000293123 773__ $$0PERI:(DE-600)2012154-4$$a10.1016/j.msea.2015.06.095$$gVol. 642, p. 117 - 127$$p117 - 127$$tMaterials science and engineering / A$$v642$$x0921-5093$$y2015
000293123 909CO $$ooai:bib-pubdb1.desy.de:293123$$pVDB
000293123 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002346$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000293123 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000250$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000293123 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003074$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000293123 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1000365$$aEuropean XFEL$$b7$$kXFEL.EU
000293123 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1000365$$aExternes Institut$$b7$$k>Extern
000293123 9131_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x0
000293123 9141_ $$y2015
000293123 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAT SCI ENG A-STRUCT : 2014
000293123 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000293123 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000293123 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000293123 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000293123 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000293123 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000293123 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000293123 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000293123 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000293123 9201_ $$0I:(DE-H253)MHF-sl-20120731$$kMHF-sl$$lHF-Technik Supraleitung$$x0
000293123 9201_ $$0I:(DE-H253)MKS-20120806$$kMKS$$lKryogenik und Supraleitung$$x1
000293123 9201_ $$0I:(DE-H253)MPL-20120731$$kMPL$$lPlanung$$x2
000293123 9201_ $$0I:(DE-H253)Eur_XFEL-20120731$$kEur.XFEL$$lEuropean XFEL$$x3
000293123 980__ $$ajournal
000293123 980__ $$aVDB
000293123 980__ $$aI:(DE-H253)MHF-sl-20120731
000293123 980__ $$aI:(DE-H253)MKS-20120806
000293123 980__ $$aI:(DE-H253)MPL-20120731
000293123 980__ $$aI:(DE-H253)Eur_XFEL-20120731
000293123 980__ $$aUNRESTRICTED