001     292359
005     20250730113732.0
024 7 _ |a 10.1021/la5027762
|2 doi
024 7 _ |a 0743-7463
|2 ISSN
024 7 _ |a 1520-5827
|2 ISSN
024 7 _ |a WOS:000348333700016
|2 WOS
024 7 _ |a pmid:25453192
|2 pmid
024 7 _ |a openalex:W2317594616
|2 openalex
037 _ _ |a PUBDB-2015-06046
082 _ _ |a 670
100 1 _ |a Weber, Christian
|0 P:(DE-H253)PIP1008209
|b 0
245 _ _ |a Electroless Preparation and ASAXS Microstructural Analysis of Pseudocapacitive Carbon Manganese Oxide Supercapacitor Electrodes
260 _ _ |a Washington, DC
|c 2015
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1464957450_27788
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a (c) American Chemical Society. Post referee full text in progress.
520 _ _ |a Anomalous small angle X-ray scattering (ASAXS) has been utilized as a noninvasive, integral tool to access the structural properties of carbon xerogel–manganese oxide electrodes with nanometer resolution. As these electrodes constitute the elementary functional units in supercapacitors and as their microstructure governs the macroscopic electrical performance, it is essential to gain a detailed morphological understanding of the underlying carbon particle scaffold coated with manganese oxide. We demonstrate that, in this regard, ASAXS provides a powerful technique and in combination with a theoretical core–shell model enables a quantitative estimation of the relevant structural parameters. As a result, we determined the thicknesses of the solution deposited MnO$_{2}$ shells to range between 3 and 26 nm depending on the carbon particle size and thus on their effective surface area. By our core–shell modeling we conclude the revealed manganese oxide coatings on the carbon support to be rather thick, but nevertheless to show a high uniformity in thickness. At 1.8 ± 0.2 to 2.2 ± 0.1 g/cm$^{3}$ the related effective MnO$_{2}$ densities of the shells are about 30% lower than the corresponding bulk density of 3.0 g/cm$^{3}$. This mainly originates from a substructure within the shell, whose growth is controlled by a pronounced reduction of the manganese precursor during layer formation. Finally, the presented ASAXS data are complemented by SEM and N$_{2}$ sorption measurements, proving not only qualitatively the proposed flake-like MnO$_{2}$ surface morphology but also confirming quantitatively the manganese shell thickness, complementary, on a local scale.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
693 _ _ |a DORIS III
|f DORIS Beamline B1
|1 EXP:(DE-H253)DORISIII-20150101
|0 EXP:(DE-H253)D-B1-20150101
|6 EXP:(DE-H253)D-B1-20150101
|x 0
700 1 _ |a Reichenauer, Gudrun
|0 P:(DE-H253)PIP1010896
|b 1
|e Corresponding author
700 1 _ |a Pflaum, Jens
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1021/la5027762
|g Vol. 31, no. 2, p. 782 - 788
|0 PERI:(DE-600)2005937-1
|n 2
|p 782 - 788
|t Langmuir
|v 31
|y 2015
|x 0743-7463
856 4 _ |u https://pubs.acs.org/doi/abs/10.1021/la5027762
856 4 _ |u https://bib-pubdb1.desy.de/record/292359/files/la5027762.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/292359/files/la5027762.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/292359/files/la5027762.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/292359/files/la5027762.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/292359/files/la5027762.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/292359/files/la5027762.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:bib-pubdb1.desy.de:292359
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k >Extern
|b 0
|6 P:(DE-H253)PIP1008209
910 1 _ |a Externes Institut
|0 I:(DE-HGF)0
|k >Extern
|b 1
|6 P:(DE-H253)PIP1010896
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANGMUIR : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21