000292359 001__ 292359
000292359 005__ 20250730113732.0
000292359 0247_ $$2doi$$a10.1021/la5027762
000292359 0247_ $$2ISSN$$a0743-7463
000292359 0247_ $$2ISSN$$a1520-5827
000292359 0247_ $$2WOS$$aWOS:000348333700016
000292359 0247_ $$2pmid$$apmid:25453192
000292359 0247_ $$2openalex$$aopenalex:W2317594616
000292359 037__ $$aPUBDB-2015-06046
000292359 082__ $$a670
000292359 1001_ $$0P:(DE-H253)PIP1008209$$aWeber, Christian$$b0
000292359 245__ $$aElectroless Preparation and ASAXS Microstructural Analysis of Pseudocapacitive Carbon Manganese Oxide Supercapacitor Electrodes
000292359 260__ $$aWashington, DC$$bACS Publ.$$c2015
000292359 3367_ $$2DRIVER$$aarticle
000292359 3367_ $$2DataCite$$aOutput Types/Journal article
000292359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1464957450_27788
000292359 3367_ $$2BibTeX$$aARTICLE
000292359 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000292359 3367_ $$00$$2EndNote$$aJournal Article
000292359 500__ $$a(c) American Chemical Society. Post referee full text in progress.
000292359 520__ $$aAnomalous small angle X-ray scattering (ASAXS) has been utilized as a noninvasive, integral tool to access the structural properties of carbon xerogel–manganese oxide electrodes with nanometer resolution. As these electrodes constitute the elementary functional units in supercapacitors and as their microstructure governs the macroscopic electrical performance, it is essential to gain a detailed morphological understanding of the underlying carbon particle scaffold coated with manganese oxide. We demonstrate that, in this regard, ASAXS provides a powerful technique and in combination with a theoretical core–shell model enables a quantitative estimation of the relevant structural parameters. As a result, we determined the thicknesses of the solution deposited MnO$_{2}$ shells to range between 3 and 26 nm depending on the carbon particle size and thus on their effective surface area. By our core–shell modeling we conclude the revealed manganese oxide coatings on the carbon support to be rather thick, but nevertheless to show a high uniformity in thickness. At 1.8 ± 0.2 to 2.2 ± 0.1 g/cm$^{3}$ the related effective MnO$_{2}$ densities of the shells are about 30% lower than the corresponding bulk density of 3.0 g/cm$^{3}$. This mainly originates from a substructure within the shell, whose growth is controlled by a pronounced reduction of the manganese precursor during layer formation. Finally, the presented ASAXS data are complemented by SEM and N$_{2}$ sorption measurements, proving not only qualitatively the proposed flake-like MnO$_{2}$ surface morphology but also confirming quantitatively the manganese shell thickness, complementary, on a local scale.
000292359 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000292359 588__ $$aDataset connected to CrossRef
000292359 693__ $$0EXP:(DE-H253)D-B1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-B1-20150101$$aDORIS III$$fDORIS Beamline B1$$x0
000292359 7001_ $$0P:(DE-H253)PIP1010896$$aReichenauer, Gudrun$$b1$$eCorresponding author
000292359 7001_ $$0P:(DE-HGF)0$$aPflaum, Jens$$b2
000292359 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/la5027762$$gVol. 31, no. 2, p. 782 - 788$$n2$$p782 - 788$$tLangmuir$$v31$$x0743-7463$$y2015
000292359 8564_ $$uhttps://pubs.acs.org/doi/abs/10.1021/la5027762
000292359 8564_ $$uhttps://bib-pubdb1.desy.de/record/292359/files/la5027762.pdf$$yRestricted
000292359 8564_ $$uhttps://bib-pubdb1.desy.de/record/292359/files/la5027762.gif?subformat=icon$$xicon$$yRestricted
000292359 8564_ $$uhttps://bib-pubdb1.desy.de/record/292359/files/la5027762.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000292359 8564_ $$uhttps://bib-pubdb1.desy.de/record/292359/files/la5027762.jpg?subformat=icon-180$$xicon-180$$yRestricted
000292359 8564_ $$uhttps://bib-pubdb1.desy.de/record/292359/files/la5027762.jpg?subformat=icon-640$$xicon-640$$yRestricted
000292359 8564_ $$uhttps://bib-pubdb1.desy.de/record/292359/files/la5027762.pdf?subformat=pdfa$$xpdfa$$yRestricted
000292359 909CO $$ooai:bib-pubdb1.desy.de:292359$$pVDB
000292359 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008209$$aExternes Institut$$b0$$k>Extern
000292359 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010896$$aExternes Institut$$b1$$k>Extern
000292359 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000292359 9141_ $$y2015
000292359 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000292359 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000292359 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000292359 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000292359 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2014
000292359 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000292359 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000292359 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000292359 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000292359 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000292359 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000292359 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000292359 980__ $$ajournal
000292359 980__ $$aVDB
000292359 980__ $$aI:(DE-H253)HAS-User-20120731
000292359 980__ $$aUNRESTRICTED