TY  - CONF
AU  - Sagun, V. V.
AU  - Ivanytskyi, A. I.
AU  - Bugaev, K. A.
AU  - Oliinychenko, D. R.
TI  - Bimodality Phenomenon in Finite and Infinite Systems Within an Exactly Solvable Statistical Model
IS  - arXiv:1311.7042
CY  - Hamburg
PB  - Deutsches Elektronen-Synchrotron, DESY
M1  - PUBDB-2015-05847
M1  - arXiv:1311.7042
SP  - 269-273
PY  - 2014
AB  - We present a few explicit counterexamples to the widely spread beliefabout an exclusive role of the bimodal nuclear fragment size distributionsas the first order phase transition signal. In thermodynamic limitthe bimodality may appear at the supercritical temperatures due tothe negative values of the surface tension coefficient. Such a resultis found within a novel exactly solvable formulation of the simplifiedstatistical multifragmentation model based on the virial expansionfor a system of the nuclear fragments of all sizes. The developedstatistical model corresponds to the compressible nuclear liquid withthe tricritical endpoint located at one third of the normal nucleardensity. Its exact solution for finite volumes demonstrates thebimodal fragment size distribution right inside the finite volumeanalog of a gaseous phase. These counterexamples clearly demonstratethe pitfalls of Hill approach to phase transitions in finite systems.T = Bimodality Phenomenon in Finite and Infinite Systems Within an Exactly Solvable Statistical Model
T2  - Helmholtz International School on Physics of Heavy Quarks and Hadrons
CY  - 15 Jul 2013 - 28 Jul 2013, Dubna (Russia)
Y2  - 15 Jul 2013 - 28 Jul 2013
M2  - Dubna, Russia
KW  - model: statistical (INSPIRE)
KW  - nucleus: density (INSPIRE)
KW  - critical phenomena (INSPIRE)
KW  - finite size (INSPIRE)
KW  - surface tension (INSPIRE)
KW  - thermodynamical (INSPIRE)
KW  - temperature (INSPIRE)
KW  - liquid (INSPIRE)
LB  - PUB:(DE-HGF)8 ; PUB:(DE-HGF)15
DO  - DOI:10.3204/DESY-PROC-2013-03/Sagun
UR  - https://bib-pubdb1.desy.de/record/292134
ER  -