000232274 001__ 232274
000232274 005__ 20230212180602.0
000232274 0247_ $$2CORDIS$$aG:(EU-Grant)674960$$d674960
000232274 0247_ $$2CORDIS$$aG:(EU-Call)H2020-MSCA-ITN-2015$$dH2020-MSCA-ITN-2015
000232274 0247_ $$2originalID$$acorda__h2020::674960
000232274 035__ $$aG:(EU-Grant)674960
000232274 150__ $$aAngular studies of photoelectrons in innovative research environments$$y2016-03-01 - 2020-02-29
000232274 371__ $$aForschungsverbund Berlin$$bFVB$$dGermany$$ehttp://www.fv-berlin.de/organisation-1/history$$vCORDIS
000232274 371__ $$aROENTDEK - HANDELS GMBH$$dGermany$$ehttp://www.roentdek.com$$vCORDIS
000232274 371__ $$aOpTek Limited$$dUnited Kingdom$$ehttp://www.photek.co.uk$$vCORDIS
000232274 371__ $$aSYNCHROTRON SOLEIL SOCIETE CIVILE$$bSYNCHROTRON SOLEIL$$dFrance$$ehttp://www.synchrotron-soleil.fr/portal/page/portal/Accueil$$vCORDIS
000232274 371__ $$aNational Research Council$$bCNR$$dItaly$$ehttp://www.cnr.it/sitocnr/home.html$$vCORDIS
000232274 371__ $$aJohann Wolfgang Goethe-Universtität Fachbereich Informatik und Mathematik Institut für Mathematik$$bGUF$$dGermany$$ehttp://www.uni-frankfurt.de/$$vCORDIS
000232274 371__ $$aAarhus University$$bAU$$dDenmark$$ehttp://www.au.dk/en/$$vCORDIS
000232274 371__ $$aCNRS - Institut des Sciences Biologiques$$bINSB$$dFrance$$ehttp://www.cnrs.fr/insb/$$vCORDIS
000232274 371__ $$aNottingham Trent University$$bNTU$$dUnited Kingdom$$ehttp://www.ntu.ac.uk/$$vCORDIS
000232274 372__ $$aH2020-MSCA-ITN-2015$$s2016-03-01$$t2020-02-29
000232274 450__ $$aASPIRE$$wd$$y2016-03-01 - 2020-02-29
000232274 5101_ $$0I:(DE-588b)5098525-5$$2CORDIS$$aEuropean Union
000232274 680__ $$aIn the ASPIRE project, whose academic and industrial beneficiaries are world leading in their complementary fields of expertise, the overarching research goal is the measurement of photoelectron angular distributions (PADs) in the “molecular frame” (MF) of systems of biological relevance. These MF-PADs can be interpreted as electron diffraction patterns, achieved by “illuminating the molecule from within”, and enable the shapes and motions of individual molecules to be interrogated. Such knowledge is needed for the development of new medicines (the shapes of drug molecules dictate their function) and new materials (efficient solar cells can be constructed if energy dissipation processes in molecules are understood). Progress in this area is highly technologically driven, requiring high repetition rate, short wavelength light sources and fast detectors. The input of private sector beneficiaries is therefore critical to the scientific objectives, as well as to the enhanced training environment. Work packages on advanced light source and detector developments will feed into the overall goal through secondments, regular virtual meetings and face-to-face network meetings. The symbiosis of the developments that will take place in ASPIRE will create a research and training environment that is world-leading and optimally tailored to capitalise, for example, on the investment that has been made in the European XFEL facility. The ESRs will be trained in world-leading laboratories and will benefit from the exchange of best practice among beneficiaries and partners, and from unique training events. ASPIRE will therefore ensure that European research remains competitive in the global market, and that the trained researchers will be uniquely well-placed to contribute to the development of novel instrumentation in the future.
000232274 909CO $$ooai:juser.fz-juelich.de:212944$$pauthority$$pauthority:GRANT
000232274 909CO $$ooai:juser.fz-juelich.de:212944
000232274 970__ $$aoai:dnet:corda__h2020::ecaa26b6f9bcc7fae295e94a100ae8cf
000232274 980__ $$aG
000232274 980__ $$aCORDIS
000232274 980__ $$aAUTHORITY