000209501 001__ 209501
000209501 005__ 20250730112649.0
000209501 0247_ $$2doi$$a10.1007/s11356-015-4291-3
000209501 0247_ $$2ISSN$$a0944-1344
000209501 0247_ $$2ISSN$$a1614-7499
000209501 0247_ $$2WOS$$aWOS:000354486800042
000209501 0247_ $$2pmid$$apmid:25801368
000209501 0247_ $$2openalex$$aopenalex:W1994034173
000209501 037__ $$aPUBDB-2015-02085
000209501 082__ $$a333.7
000209501 1001_ $$0P:(DE-H253)PIP1012946$$aProffit, S.$$b0
000209501 245__ $$aUsing Synthetic Models to Simulate Aging of Cu Contamination in Soils
000209501 260__ $$aBerlin$$bSpringer$$c2015
000209501 3367_ $$00$$2EndNote$$aJournal Article
000209501 3367_ $$2DRIVER$$aarticle
000209501 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1432114074_26289
000209501 3367_ $$2BibTeX$$aARTICLE
000209501 520__ $$aThe Bureau Commun de Référence (BCR) sequential extraction scheme and micro-synchrotron-based X-ray fluorescence (μ-SXRF) analysis were used to determine the Cu fractionation in a calcareous vineyard soil and a synthetic soil (mixture of seven constituents: calcite, birnessite, ferrihydrite, goethite, lignocellulosic residue, kaolinite, and quartz) at different Cu contamination rates (190, 1270, and 6350 mg kg−1 of Cu) and aging times (1, 30, 92, and 181 days). The Cu distribution in the spiked vineyard and synthetic soils was different from the original vineyard one and was influenced by the loading level. The newly added Cu was preferentially present in the acid soluble fraction. Aging of the contaminated vineyard and synthetic soils during 6 months led to the redistribution of Cu from the weakly bound acid soluble fraction to the strongly bound reducible one. The evolution with time could satisfactorily be simulated by the Elovich diffusion model for the synthetic soils. It was less significant as less marked in the contaminated vineyard soil than in the synthetic one, even though the trends observed in both were similar. This study supported the hypothesis that “simple” synthetic models could be used to approach the Cu fractionation and its evolution with time in vineyard soils.
000209501 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000209501 588__ $$aDataset connected to CrossRef, bib-pubdb1.desy.de
000209501 693__ $$0EXP:(DE-H253)D-L-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-L-20150101$$aDORIS III$$fDORIS Beamline L$$x0
000209501 7001_ $$0P:(DE-HGF)0$$aMarin, B.$$b1
000209501 7001_ $$0P:(DE-HGF)0$$aCances, B.$$b2
000209501 7001_ $$0P:(DE-HGF)0$$aPonthieu, M.$$b3
000209501 7001_ $$0P:(DE-H253)PIP1010381$$aSayen, S.$$b4$$eCorresponding Author
000209501 7001_ $$0P:(DE-H253)PIP1009046$$aGuillon, E.$$b5
000209501 773__ $$0PERI:(DE-600)2014192-0$$a10.1007/s11356-015-4291-3$$gVol. 22, no. 10, p. 7641 - 7652$$n10$$p7641 - 7652$$tEnvironmental science and pollution research$$v22$$x1614-7499$$y2015
000209501 8564_ $$uhttps://bib-pubdb1.desy.de/record/209501/files/art_3A10.1007_2Fs11356-015-4291-3.pdf$$yRestricted
000209501 8564_ $$uhttps://bib-pubdb1.desy.de/record/209501/files/art_3A10.1007_2Fs11356-015-4291-3.gif?subformat=icon$$xicon$$yRestricted
000209501 8564_ $$uhttps://bib-pubdb1.desy.de/record/209501/files/art_3A10.1007_2Fs11356-015-4291-3.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000209501 8564_ $$uhttps://bib-pubdb1.desy.de/record/209501/files/art_3A10.1007_2Fs11356-015-4291-3.jpg?subformat=icon-180$$xicon-180$$yRestricted
000209501 8564_ $$uhttps://bib-pubdb1.desy.de/record/209501/files/art_3A10.1007_2Fs11356-015-4291-3.jpg?subformat=icon-640$$xicon-640$$yRestricted
000209501 8564_ $$uhttps://bib-pubdb1.desy.de/record/209501/files/art_3A10.1007_2Fs11356-015-4291-3.pdf?subformat=pdfa$$xpdfa$$yRestricted
000209501 909CO $$ooai:bib-pubdb1.desy.de:209501$$pVDB
000209501 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012946$$aExternes Institut$$b0$$k>Extern
000209501 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010381$$aExternes Institut$$b4$$k>Extern
000209501 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009046$$aExternes Institut$$b5$$k>Extern
000209501 9130_ $$0G:(DE-HGF)POF2-54G13$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$9G:(DE-H253)POF2-L-20130405$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vDORIS III$$x0
000209501 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000209501 9141_ $$y2015
000209501 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI POLLUT R : 2013
000209501 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000209501 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000209501 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000209501 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000209501 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000209501 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000209501 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000209501 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000209501 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000209501 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000209501 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000209501 980__ $$ajournal
000209501 980__ $$aVDB
000209501 980__ $$aI:(DE-H253)HAS-User-20120731
000209501 980__ $$aUNRESTRICTED