000208878 001__ 208878
000208878 005__ 20250730145833.0
000208878 0247_ $$2doi$$a10.1039/C4TC01214C
000208878 0247_ $$2ISSN$$a2050-7526
000208878 0247_ $$2ISSN$$a2050-7534
000208878 0247_ $$2WOS$$aWOS:000344330700014
000208878 0247_ $$2openalex$$aopenalex:W2032079160
000208878 037__ $$aPUBDB-2015-01930
000208878 041__ $$aEnglish
000208878 082__ $$a540
000208878 1001_ $$0P:(DE-H253)PIP1011780$$aLorbeer, Chantal$$b0
000208878 245__ $$aCharge compensation in $RE^{3+}$ (RE = Eu, Gd) and $M^+$ (M = Li, Na, K) co-doped alkaline earth nanofluorides obtained by microwave reaction with reactive ionic liquids leading to improved optical properties
000208878 260__ $$aLondon [u.a.]$$bRSC$$c2014
000208878 3367_ $$00$$2EndNote$$aJournal Article
000208878 3367_ $$2DRIVER$$aarticle
000208878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1429606792_10420
000208878 3367_ $$2BibTeX$$aARTICLE
000208878 520__ $$aAlkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.
000208878 536__ $$0G:(DE-H253)POF2-I-20130405$$aDORIS Beamline I (POF2-54G13)$$cPOF2-54G13$$fPOF II$$x0
000208878 588__ $$aDataset connected to CrossRef, bib-pubdb1.desy.de
000208878 693__ $$0EXP:(DE-H253)D-I-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-I-20150101$$aDORIS III$$fDORIS Beamline I$$x0
000208878 7001_ $$0P:(DE-HGF)0$$aBehrends, F.$$b1
000208878 7001_ $$0P:(DE-H253)PIP1008586$$aCybinska, J.$$b2
000208878 7001_ $$0P:(DE-HGF)0$$aEckert, H.$$b3
000208878 7001_ $$0P:(DE-H253)PIP1010531$$aMudring, Anja Verena$$b4$$eCorresponding Author
000208878 773__ $$0PERI:(DE-600)2702245-6$$a10.1039/C4TC01214C$$gVol. 2, no. 44, p. 9439 - 9450$$n44$$p9439 - 9450$$tJournal of materials chemistry / C$$v2$$x2050-7534$$y2014
000208878 8564_ $$uhttp://pubs.rsc.org/en/content/articlehtml/2014/tc/c4tc01214c
000208878 8564_ $$uhttps://bib-pubdb1.desy.de/record/208878/files/c4tc01214c.pdf$$yRestricted
000208878 8564_ $$uhttps://bib-pubdb1.desy.de/record/208878/files/c4tc01214c.gif?subformat=icon$$xicon$$yRestricted
000208878 8564_ $$uhttps://bib-pubdb1.desy.de/record/208878/files/c4tc01214c.jpg?subformat=icon-180$$xicon-180$$yRestricted
000208878 8564_ $$uhttps://bib-pubdb1.desy.de/record/208878/files/c4tc01214c.jpg?subformat=icon-700$$xicon-700$$yRestricted
000208878 8564_ $$uhttps://bib-pubdb1.desy.de/record/208878/files/c4tc01214c.pdf?subformat=pdfa$$xpdfa$$yRestricted
000208878 909CO $$ooai:bib-pubdb1.desy.de:208878$$pVDB
000208878 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011780$$aExternes Institut$$b0$$k>Extern
000208878 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008586$$aExternes Institut$$b2$$k>Extern
000208878 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010531$$aExternes Institut$$b4$$k>Extern
000208878 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000208878 9131_ $$0G:(DE-HGF)POF2-54G13$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$9G:(DE-H253)POF2-I-20130405$$aDE-H253$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vDORIS III$$x0
000208878 9141_ $$y2014
000208878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM C : 2013
000208878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000208878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000208878 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000208878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000208878 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000208878 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000208878 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000208878 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000208878 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000208878 980__ $$ajournal
000208878 980__ $$aVDB
000208878 980__ $$aI:(DE-H253)HAS-User-20120731
000208878 980__ $$aUNRESTRICTED