000208847 001__ 208847
000208847 005__ 20250930150055.0
000208847 0247_ $$2doi$$a10.1149/2.011302jss
000208847 0247_ $$2ISSN$$a2162-8769
000208847 0247_ $$2ISSN$$a2162-8777
000208847 0247_ $$2WOS$$aWOS:000319455200019
000208847 0247_ $$2openalex$$aopenalex:W2330223960
000208847 037__ $$aPUBDB-2015-01918
000208847 041__ $$aEnglish
000208847 082__ $$a540
000208847 1001_ $$0P:(DE-H253)PIP1009964$$aIvanovskikh, Konstantin$$b0$$eCorresponding Author
000208847 245__ $$aLuminescence Temperature Quenching for $Ce^{3+}$ and $Pr^{3+}$ d-f Emission in YAG and LuAG
000208847 260__ $$aPennington, NJ$$bECS$$c2013
000208847 3367_ $$2DRIVER$$aarticle
000208847 3367_ $$2DataCite$$aOutput Types/Journal article
000208847 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1533987572_21880
000208847 3367_ $$2BibTeX$$aARTICLE
000208847 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000208847 3367_ $$00$$2EndNote$$aJournal Article
000208847 500__ $$a© The Electrochemical Society.; Post referee fulltext in progress
000208847 520__ $$aThe d-f emission from Ce3+ and Pr3+ in garnets is attracting considerable attention, especially in relation to application in white light LEDs and scintillators. An important aspect is the luminescence quenching temperature TQ. It is not trivial to determine TQ and to unravel the quenching mechanism. In this paper the TQ of d-f emission for Ce3+ and Pr3+ are determined by temperature dependent lifetime measurements. The results show a TQ for Pr3+ of 340 K for Y3Al5O12:Pr3+ (YAG:Pr) and 680 K for Lu3Al5O12:Pr3+ (LuAG:Pr). For Ce3+ the TQ is too high to measure. An onset of quenching above 600 K (YAG:Ce) or 700 K (LuAG:Ce) is observed. The differences in TQ between YAG and LuAG are explained by a smaller Stokes shift for the d-f emission in LuAG (∼2300 cm−1) compared to YAG (∼2750 cm−1) derived from low temperature luminescence spectra. The large difference in TQ between Ce3+ and Pr3+ is related to the smaller energy difference between the lowest energetic fd state of Pr3+ and the next lower 4f2 state (3P2) compared to the 5d – 4f1(2F7/2) energy difference for Ce3+. Both observations are consistent with luminescence temperature quenching by non-radiative relaxation from the 5d state to the 4f state described by a configurational coordinate diagram and not by thermally induced photoionization.
000208847 536__ $$0G:(DE-H253)POF2-I-20130405$$aDORIS Beamline I (POF2-54G13)$$cPOF2-54G13$$fPOF II$$x0
000208847 588__ $$aDataset connected to CrossRef, bib-pubdb1.desy.de
000208847 693__ $$0EXP:(DE-H253)D-I-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-I-20150101$$aDORIS III$$fDORIS Beamline I$$x0
000208847 7001_ $$0P:(DE-HGF)0$$aOgieglo, J. M.$$b1
000208847 7001_ $$0P:(DE-H253)PIP1007370$$aZych, A.$$b2
000208847 7001_ $$0P:(DE-HGF)0$$aRonda, C. R.$$b3
000208847 7001_ $$0P:(DE-H253)PIP1008235$$aMeijerink, A.$$b4
000208847 773__ $$0PERI:(DE-600)2674149-0$$a10.1149/2.011302jss$$gVol. 2, no. 2, p. R3148 - R3152$$n2$$pR3148 - R3152$$tECS journal of solid state science and technology$$v2$$x2162-8777$$y2013
000208847 8564_ $$uhttp://jss.ecsdl.org/content/2/2/R3148.short
000208847 8564_ $$uhttps://bib-pubdb1.desy.de/record/208847/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2013-Ivanovskikh-R3148-52.pdf$$yRestricted
000208847 8564_ $$uhttps://bib-pubdb1.desy.de/record/208847/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2013-Ivanovskikh-R3148-52.gif?subformat=icon$$xicon$$yRestricted
000208847 8564_ $$uhttps://bib-pubdb1.desy.de/record/208847/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2013-Ivanovskikh-R3148-52.jpg?subformat=icon-180$$xicon-180$$yRestricted
000208847 8564_ $$uhttps://bib-pubdb1.desy.de/record/208847/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2013-Ivanovskikh-R3148-52.jpg?subformat=icon-700$$xicon-700$$yRestricted
000208847 8564_ $$uhttps://bib-pubdb1.desy.de/record/208847/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2013-Ivanovskikh-R3148-52.pdf?subformat=pdfa$$xpdfa$$yRestricted
000208847 909CO $$ooai:bib-pubdb1.desy.de:208847$$pVDB
000208847 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009964$$aExternes Institut$$b0$$k>Extern
000208847 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007370$$aExternes Institut$$b2$$k>Extern
000208847 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008235$$aExternes Institut$$b4$$k>Extern
000208847 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bForschungsbereich Materie$$lForschungsbereich Materie$$vohne Topic$$x0
000208847 9131_ $$0G:(DE-HGF)POF2-54G13$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$9G:(DE-H253)POF2-I-20130405$$aDE-H253$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vDORIS III$$x0
000208847 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000208847 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000208847 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000208847 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000208847 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000208847 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000208847 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000208847 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000208847 980__ $$ajournal
000208847 980__ $$aVDB
000208847 980__ $$aI:(DE-H253)HAS-User-20120731
000208847 980__ $$aUNRESTRICTED