% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Aleksi:207275,
author = {Aleksić, J. and Ansoldi, S. and Antonelli, L. A. and
Antoranz, P. and Babic, A. and Bangale, P. and Barrio, J. A.
and González, J. Becerra and Bednarek, W. and Bernardini,
E. and Biasuzzi, B. and Biland, A. and Blanch, O. and
Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T.
and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E.
and Contreras, J. L. and Cortina, J. and Covino, S. and Da
Vela, P. and Dazzi, F. and De Angelis, A. and De Caneva, G.
and De Lotto, B. and Wilhelmi, E. de Oña and Mendez, C.
Delgado and Prester, D. Dominis and Dorner, D. and Doro, M.
and Einecke, S. and Eisenacher, D. and Elsaesser, D. and
Fidalgo, D. and Fonseca, M. V. and Font, L. and Frantzen, K.
and Fruck, C. and Galindo, D. and López, R. J. García and
Garczarczyk, M. and Terrats, D. Garrido and Gaug, M. and
Godinović, N. and Muñoz, A. González and Gozzini, S. R.
and Hadasch, D. and Hanabata, Y. and Hayashida, M. and
Herrera, J. and Hildebrand, D. and Hose, J. and Hrupec, D.
and Idec, W. and Kadenius, V. and Kellermann, H. and
Knoetig, M. L. and Kodani, K. and Konno, Y. and Krause, J.
and Kubo, H. and Kushida, J. and La Barbera, A. and Lelas,
D. and Lewandowska, N. and Lindfors, E. and Lombardi, S. and
Longo, F. and López, M. and López-Coto, R. and
López-Oramas, A. and Lorenz, E. and Lozano, I. and
Makariev, M. and Mallot, K. and Maneva, G. and Mankuzhiyil,
N. and Mannheim, K. and Maraschi, L. and Marcote, B. and
Mariotti, M. and Martínez, M. and Mazin, D. and Menzel, U.
and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and
Munar-Adrover, P. and Nakajima, D. and Neustroev, V. and
Niedzwiecki, A. and Nilsson, K. and Nishijima, K. and Noda,
K. and Orito, R. and Overkemping, A. and Paiano, S. and
Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes,
J. M. and Paredes-Fortuny, X. and Persic, M. and Poutanen,
J. and Moroni, P. G. Prada and Prandini, E. and Puljak, I.
and Reinthal, R. and Rhode, W. and Ribó, M. and Rico, J.
and Garcia, J. Rodriguez and Rügamer, S. and Saito, T. and
Saito, K. and Satalecka, K. and Scalzotto, V. and Scapin, V.
and Schultz, C. and Schweizer, T. and Shore, S. N. and
Sillanpää, A. and Sitarek, J. and Snidaric, I. and
Sobczynska, D. and Spanier, F. and Stamerra, A. and
Steinbring, T. and Storz, J. and Strzys, M. and Takalo, L.
and Takami, H. and Tavecchio, F. and Temnikov, P. and
Terzić, T. and Tescaro, D. and Teshima, M. and Thaele, J.
and Tibolla, O. and Torres, D. F. and Toyama, T. and Treves,
A. and Vogler, P. and Will, M. and Zanin, R.},
title = {{M}easurement of the {C}rab {N}ebula {S}pectrum over
{T}hree {D}ecades in {E}nergy with the {MAGIC} {T}elescopes},
reportid = {PUBDB-2015-01258, arXiv:1406.6892},
year = {2014},
note = {OA},
abstract = {The MAGIC stereoscopic system collected 69 hours of Crab
Nebula data between October 2009 and April 2011. Analysis of
this data sample using the latest improvements in the MAGIC
stereoscopic software provided an unprecedented precision of
spectral and night-by-night light curve determination at
gamma rays. We derived a differential spectrum with a single
instrument from 50 GeV up to almost 30 TeV with 5 bins per
energy decade. In the low energies, MAGIC results, combined
with the Fermi-LAT data, show a flat Inverse Compton peak.
The Fermi-LAT and MAGIC spectral data were fit from 1 GeV to
30 TeV with a log-parabola, yielding a peak position at (53
$\pm$ 3) GeV with a $\chi^2_{red}$ = 82/27 (error probably
underestimated due to the bad fit quality), showing that the
log-parabola is not a good representation of the Inverse
Compton peak of the Crab Nebula. There is no hint of the
integral flux variability on daily scales at energies above
300 GeV if accounting for systematic uncertainties of the
measurement. We consider two state-of-the-art theoretical
models to describe the overall spectral energy distribution
of the Crab Nebula. The constant B-field model cannot
satisfactorily reproduce the VHE spectral measurements
presented in this work, mostly troubled by the broadness of
the observed IC peak. Most probably this implies that the
assumption of the homogeneity of the magnetic field inside
the nebula is incorrect. On the other hand, the
time-dependent 1D spectral model provides a good fit of the
new VHE results when considering a 80 {\mu}G magnetic field.
However, it fails to match the data when including the
morphology of the nebula at lower wavelengths.},
cin = {ZEU-EXP/AT},
cid = {$I:(DE-H253)ZEU-EXP_AT-20120731$},
pnm = {523 - High-energy gamma ray astronomy (POF2-523)},
pid = {G:(DE-HGF)POF2-523},
experiment = {EXP:(DE-MLZ)NOSPEC-20140101},
typ = {PUB:(DE-HGF)25 / PUB:(DE-HGF)15},
eprint = {1406.6892},
howpublished = {arXiv:1406.6892},
archivePrefix = {arXiv},
SLACcitation = {$\%\%CITATION$ = $arXiv:1406.6892;\%\%$},
url = {https://bib-pubdb1.desy.de/record/207275},
}