000207201 001__ 207201
000207201 005__ 20250803045908.0
000207201 0247_ $$2doi$$a10.1088/1748-0221/9/12/P12003
000207201 0247_ $$2WOS$$aWOS:000345859200019
000207201 0247_ $$2inspire$$ainspire:1332987
000207201 0247_ $$2openalex$$aopenalex:W2025657109
000207201 0247_ $$2altmetric$$aaltmetric:167234555
000207201 037__ $$aPUBDB-2015-01184
000207201 041__ $$aEnglish
000207201 082__ $$a610
000207201 1001_ $$0P:(DE-H253)PIP1008603$$aPennicard, D.$$b0$$eCorresponding Author$$udesy
000207201 245__ $$aA Germanium Hybrid Pixel Detector with 55μm Pixel Size and 65,000 Channels
000207201 260__ $$aLondon$$bInst. of Physics$$c2014
000207201 3367_ $$00$$2EndNote$$aJournal Article
000207201 3367_ $$2DRIVER$$aarticle
000207201 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1423032976_20567
000207201 3367_ $$2BibTeX$$aARTICLE
000207201 500__ $$aOA
000207201 520__ $$aHybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available.A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.
000207201 536__ $$0G:(DE-HGF)POF2-541$$a541 - Photons (POF2-541)$$cPOF2-541$$fPOF II$$x0
000207201 588__ $$aDataset connected to CrossRef, bib-pubdb1.desy.de
000207201 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000207201 7001_ $$0P:(DE-H253)PIP1005584$$aStruth, B.$$b1$$udesy
000207201 7001_ $$0P:(DE-H253)PIP1002475$$aHirsemann, H.$$b2$$udesy
000207201 7001_ $$0P:(DE-H253)PIP1013007$$aSarajlic, M.$$b3$$udesy
000207201 7001_ $$0P:(DE-H253)PIP1011689$$aSmoljanin, S.$$b4$$udesy
000207201 7001_ $$0P:(DE-HGF)0$$aZuvic, M.$$b5
000207201 7001_ $$0P:(DE-HGF)0$$aLampert, M. O.$$b6
000207201 7001_ $$0P:(DE-HGF)0$$aFritzsch, T.$$b7
000207201 7001_ $$0P:(DE-HGF)0$$aRothermund, M.$$b8
000207201 7001_ $$0P:(DE-H253)PIP1005340$$aGraafsma, H.$$b9$$udesy
000207201 773__ $$0PERI:(DE-600)2235672-1$$a10.1088/1748-0221/9/12/P12003$$gVol. 9, no. 12, p. P12003 - P12003$$n12$$pP12003 - P12003$$tJournal of Instrumentation$$v9$$x1748-0221$$y2014
000207201 8564_ $$uhttp://iopscience.iop.org/1748-0221/9/12/P12003/
000207201 8564_ $$uhttps://bib-pubdb1.desy.de/record/207201/files/Pennicard%20JINST%202014%20Germanium.pdf$$yOpenAccess
000207201 8564_ $$uhttps://bib-pubdb1.desy.de/record/207201/files/Pennicard%20JINST%202014%20Germanium.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000207201 909CO $$ooai:bib-pubdb1.desy.de:207201$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000207201 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1008603$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000207201 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005584$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000207201 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002475$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000207201 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013007$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000207201 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011689$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000207201 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005340$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000207201 9132_ $$0G:(DE-HGF)POF3-632$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector technology and systems$$x0
000207201 9131_ $$0G:(DE-HGF)POF2-541$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vPhotons$$x0
000207201 9141_ $$y2014
000207201 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000207201 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000207201 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000207201 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000207201 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000207201 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000207201 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000207201 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000207201 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000207201 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000207201 9201_ $$0I:(DE-H253)FS-DS-20120731$$kFS-DS$$lFS-Detektor Systeme$$x0
000207201 980__ $$ajournal
000207201 980__ $$aVDB
000207201 980__ $$aUNRESTRICTED
000207201 980__ $$aFullTexts
000207201 980__ $$aI:(DE-H253)FS-DS-20120731
000207201 9801_ $$aFullTexts