000206559 001__ 206559
000206559 005__ 20211110130209.0
000206559 0247_ $$2arXiv$$aarXiv:1410.3382
000206559 0247_ $$2altmetric$$aaltmetric:2770950
000206559 0247_ $$2inspire$$ainspire:1321735
000206559 037__ $$aPUBDB-2015-01023
000206559 0881_ $$aDESY-14-181; arXiv:1410.3382
000206559 088__ $$2DESY$$aDESY-14-181
000206559 088__ $$2arXiv$$aarXiv:1410.3382
000206559 1001_ $$aGrassi, Alba$$b0$$eCorresponding Author
000206559 245__ $$aTopological Strings from Quantum Mechanics
000206559 260__ $$c2014
000206559 3367_ $$2DRIVER$$apreprint
000206559 3367_ $$028$$2EndNote$$aElectronic Article
000206559 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1448872163_24197
000206559 3367_ $$2BibTeX$$aARTICLE
000206559 3367_ $$0PUB:(DE-HGF)15$$2PUB:(DE-HGF)$$aInternal Report$$mintrep
000206559 500__ $$aOA
000206559 520__ $$aWe propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized theta function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P2, local P1xP1 and local F1. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
000206559 536__ $$0G:(DE-HGF)POF2-514$$a514 - Theoretical Particle Physics (POF2-514)$$cPOF2-514$$fPOF II$$x0
000206559 536__ $$0G:(EU-Grant)317089$$aGATIS - Gauge Theory as an Integrable System (317089)$$c317089$$fFP7-PEOPLE-2012-ITN$$x1
000206559 588__ $$aDataset connected to arXivarXiv
000206559 650_7 $$2INSPIRE$$astring: topological
000206559 650_7 $$2INSPIRE$$aspace: Calabi-Yau
000206559 650_7 $$2INSPIRE$$astring model: topological
000206559 650_7 $$2INSPIRE$$aoperator: spectrum
000206559 650_7 $$2INSPIRE$$acorrection: nonperturbative
000206559 650_7 $$2INSPIRE$$aspectral
000206559 650_7 $$2INSPIRE$$aquantum mechanics
000206559 650_7 $$2INSPIRE$$aquantization
000206559 650_7 $$2INSPIRE$$adeterminant
000206559 650_7 $$2INSPIRE$$amembrane model
000206559 650_7 $$2INSPIRE$$aFermi gas
000206559 650_7 $$2INSPIRE$$aorbifold
000206559 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000206559 7001_ $$0P:(DE-H253)PIP1018306$$aHatsuda, Yasuyuki$$b1$$udesy
000206559 7001_ $$aMarino, Marcos$$b2
000206559 8564_ $$uhttps://bib-pubdb1.desy.de/record/206559/files/1410.3382v2.pdf$$yOpenAccess
000206559 8564_ $$uhttps://bib-pubdb1.desy.de/record/206559/files/1410.3382v2.gif?subformat=icon$$xicon$$yOpenAccess
000206559 8564_ $$uhttps://bib-pubdb1.desy.de/record/206559/files/1410.3382v2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000206559 8564_ $$uhttps://bib-pubdb1.desy.de/record/206559/files/1410.3382v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000206559 8564_ $$uhttps://bib-pubdb1.desy.de/record/206559/files/1410.3382v2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000206559 8564_ $$uhttps://bib-pubdb1.desy.de/record/206559/files/1410.3382v2.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000206559 8564_ $$uhttps://bib-pubdb1.desy.de/record/206559/files/1410.3382v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000206559 909CO $$ooai:bib-pubdb1.desy.de:206559$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000206559 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1018306$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000206559 9132_ $$0G:(DE-HGF)POF3-611$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vFundamental Particles and Forces $$x0
000206559 9131_ $$0G:(DE-HGF)POF2-514$$1G:(DE-HGF)POF2-510$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lElementarteilchenphysik$$vTheoretical Particle Physics$$x0
000206559 9141_ $$y2014
000206559 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000206559 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000206559 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000206559 980__ $$apreprint
000206559 980__ $$aVDB
000206559 980__ $$aintrep
000206559 980__ $$aI:(DE-H253)T-20120731
000206559 980__ $$aUNRESTRICTED
000206559 9801_ $$aFullTexts