%0 Journal Article
%A Abramowski, A.
%A Aharonian, F.
%A Benkhali, F. Ait
%A Akhperjanian, A. G.
%A Angüner, E.
%A Anton, G.
%A Backes, M.
%A Balenderan, S.
%A Balzer, A.
%A Barnacka, A.
%A Becherini, Y.
%A Tjus, J. Becker
%A Bernlöhr, K.
%A Birsin, E.
%A Bissaldi, E.
%A Biteau, J.
%A Böttcher, M.
%A Boisson, C.
%A Bolmont, J.
%A Bordas, P.
%A Brucker, J.
%A Brun, F.
%A Brun, P.
%A Bulik, T.
%A Carrigan, S.
%A Casanova, S.
%A Chadwick, P. M.
%A Chalme-Calvet, R.
%A Chaves, R. C. G.
%A Cheesebrough, A.
%A Chrétien, M.
%A Colafrancesco, S.
%A Cologna, G.
%A Conrad, J.
%A Couturier, C.
%A Cui, Y.
%A Dalton, M.
%A Daniel, Marcus
%A Davids, I. D.
%A Degrange, B.
%A Deil, C.
%A deWilt, P.
%A Dickinson, H. J.
%A Djannati-Ataï, A.
%A Domainko, W.
%A Drury, L. O'C.
%A Dubus, G.
%A Dutson, K.
%A Dyks, J.
%A Dyrda, M.
%A Edwards, T.
%A Egberts, K.
%A Eger, P.
%A Espigat, P.
%A Farnier, C.
%A Fegan, S.
%A Feinstein, F.
%A Fernandes, M. V.
%A Fernandez, D.
%A Fiasson, A.
%A Fontaine, G.
%A Förster, A.
%A Füßling, M.
%A Gajdus, M.
%A Gallant, Y. A.
%A Garrigoux, T.
%A Giavitto, G.
%A Giebels, B.
%A Glicenstein, J. F.
%A Grondin, M. -H.
%A Grudzińska, M.
%A Häffner, S.
%A Hahn, J.
%A Harris, J.
%A Heinzelmann, G.
%A Henri, G.
%A Hermann, G.
%A Hervet, O.
%A Hillert, A.
%A Hinton, J. A.
%A Hofmann, W.
%A Hofverberg, P.
%A Holler, M.
%A Horns, D.
%A Jacholkowska, A.
%A Jahn, C.
%A Jamrozy, M.
%A Janiak, M.
%A Jankowsky, F.
%A Jung, I.
%A Kastendieck, M. A.
%A Katarzyński, K.
%A Katz, U.
%A Kaufmann, S.
%A Khélifi, B.
%A Kieffer, M.
%A Klepser, S.
%A Klochkov, D.
%A Kluźniak, W.
%A Kneiske, T.
%A Kolitzus, D.
%A Komin, Nu.
%A Kosack, K.
%A Krakau, S.
%A Krayzel, F.
%A Krüger, P. P.
%A Laffon, H.
%A Lamanna, G.
%A Lefaucheur, J.
%A Lemière, A.
%A Lemoine-Goumard, M.
%A Lenain, J. -P.
%A Lohse, T.
%A Lopatin, A.
%A Lu, C. -C.
%A Marandon, V.
%A Marcowith, A.
%A Marx, R.
%A Maurin, G.
%A Maxted, N.
%A Mayer, M.
%A McComb, T. J. L.
%A Méhault, J.
%A Meintjes, P. J.
%A Menzler, U.
%A Meyer, Manuel
%A Moderski, R.
%A Mohamed, M.
%A Moulin, E.
%A Murach, T.
%A Naumann, C. L.
%A de Naurois, M.
%A Niemiec, J.
%A Nolan, S. J.
%A Oakes, L.
%A Odaka, H.
%A Ohm, S.
%A Wilhelmi, E. de Oña
%A Opitz, B.
%A Ostrowski, M.
%A Oya, I.
%A Panter, M.
%A Parsons, R. D.
%A Arribas, M. Paz
%A Pekeur, N. W.
%A Pelletier, G.
%A Perez, J.
%A Petrucci, P. -O.
%A Peyaud, B.
%A Pita, S.
%A Poon, H.
%A Pühlhofer, G.
%A Punch, M.
%A Quirrenbach, A.
%A Raab, S.
%A Raue, M.
%A Reichardt, I.
%A Reimer, A.
%A Reimer, O.
%A Renaud, M.
%A Reyes, R. de los
%A Rieger, F.
%A Rob, L.
%A Romoli, C.
%A Rosier-Lees, S.
%A Rowell, G.
%A Rudak, B.
%A Rulten, C. B.
%A Sahakian, V.
%A Sanchez, D. A.
%A Santangelo, A.
%A Schlickeiser, R.
%A Schüssler, F.
%A Schulz, A.
%A Schwanke, U.
%A Schwarzburg, S.
%A Schwemmer, S.
%A Sol, H.
%A Spengler, G.
%A Spies, F.
%A Stawarz, Ł.
%A Steenkamp, R.
%A Stegmann, C.
%A Stinzing, F.
%A Stycz, K.
%A Sushch, I.
%A Tavernet, J. -P.
%A Tavernier, T.
%A Taylor, A. M.
%A Terrier, R.
%A Tluczykont, M.
%A Trichard, C.
%A Valerius, K.
%A van Eldik, C.
%A van Soelen, B.
%A Vasileiadis, G.
%A Venter, C.
%A Viana, A.
%A Vincent, P.
%A Völk, H. J.
%A Volpe, F.
%A Vorster, M.
%A Vuillaume, T.
%A Wagner, S. J.
%A Wagner, P.
%A Wagner, R. M.
%A Ward, M.
%A Weidinger, M.
%A Weitzel, Q.
%A White, R.
%A Wierzcholska, A.
%A Willmann, P.
%A Wörnlein, A.
%A Wouters, D.
%A Yang, R.
%A Zabalza, V.
%A Zacharias, M.
%A Zdziarski, A. A.
%A Zech, A.
%A Zechlin, H. -S.
%A Acero, F.
%A Casandjian, J. M.
%A Cohen-Tanugi, J.
%A Giordano, F.
%A Guillemot, L.
%A Lande, J.
%A Pletsch, H.
%A Uchiyama, Y.
%T Probing the Gamma-Ray Emission from HESS J1834-087 using H.E.S.S. and Fermi LAT Observations
%J Astronomy and astrophysics
%V 574
%N 10
%@ 0004-6361
%C Les Ulis
%I EDP Sciences
%M PUBDB-2014-04512
%M arXiv:1407.0862
%P A27
%D 2015
%Z OA
%X Previous observations with HESS have revealed the existence of an extended very-high-energy (VHE; E>100 GeV) gamma-ray source, HESS J1834-087, coincident with the SNR W41. The origin of the gamma-ray emission has been further investigated with HESS and the Fermi-LAT. The gamma-ray data provided by 61h (HESS) and 4 yrs (Fermi LAT) of observations cover over 5 decades in energy (1.8GeV - 30TeV). The morphology and spectrum of the TeV and GeV sources have been studied and multi-wavelength data have been used to investigate the origin of the observed emission. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (sig_TeV = 0.17), both centered on SNR W41 and exhibiting spectra described by a power law of index 2.6. The GeV source detected with Fermi is extended (sig_GeV =0.15) and morphologically matches the VHE emission. Its spectrum can be described by a power-law with index 2.15 and joins smoothly the one of the whole TeV source. A break appears in the spectra around 100 GeV. Two main scenarios are proposed to explain the emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with a molecular cloud. X-ray observations suggest the presence of a point-like source (pulsar candidate) near the center of the SNR and non-thermal X-ray diffuse emission which could arise from a potential PWN. The PWN scenario is supported by the match of of the TeV and GeV positions with the putative pulsar. However, the overall spectrum is reproduced by a 1-zone leptonic model only if an excess of low-energy electrons is injected by a high spin-down power pulsar. This low-energy component is not needed if the point-like TeV source is unrelated to the extended GeV and TeV sources. The interacting SNR scenario is supported by the spatial coincidence between the gamma-ray sources, the detection of OH maser lines and the hadronic modeling.
%F PUB:(DE-HGF)29 ; PUB:(DE-HGF)16
%9 ReportJournal Article
%U <Go to ISI:>//WOS:000349467000027
%R 10.1051/0004-6361/201322694
%U https://bib-pubdb1.desy.de/record/193081