000192666 001__ 192666
000192666 005__ 20250730144921.0
000192666 0247_ $$2doi$$a10.1063/1.4879903
000192666 0247_ $$2ISSN$$a0021-8979
000192666 0247_ $$2ISSN$$a0148-6349
000192666 0247_ $$2ISSN$$a1089-7550
000192666 0247_ $$2WOS$$aWOS:000337143500047
000192666 0247_ $$2openalex$$aopenalex:W1999959346
000192666 037__ $$aPUBDB-2014-04241
000192666 082__ $$a530
000192666 1001_ $$0P:(DE-H253)PIP1007754$$aAntonowicz, J.$$b0$$eCorresponding Author
000192666 245__ $$aLocal atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses
000192666 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2014
000192666 3367_ $$00$$2EndNote$$aJournal Article
000192666 3367_ $$2DRIVER$$aarticle
000192666 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s192666
000192666 3367_ $$2BibTeX$$aARTICLE
000192666 520__ $$aWe studied atomic and electronic structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical electronic density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free electron (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction electrons. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that electron transport properties of Cu-Zr MGs are dominated by localization effects rather than by electronic structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys
000192666 536__ $$0G:(DE-H253)POF2-X1-20130405$$aDORIS Beamline X1 (POF2-54G13)$$cPOF2-54G13$$fPOF II$$x0
000192666 588__ $$aDataset connected to CrossRef, bib-pubdb1.desy.de
000192666 693__ $$0EXP:(DE-H253)D-X1-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-X1-20150101$$aDORIS III$$fDORIS Beamline X1$$x0
000192666 7001_ $$0P:(DE-H253)PIP1007803$$aPietnoczka, A.$$b1
000192666 7001_ $$0P:(DE-HGF)0$$aPękała, K.$$b2
000192666 7001_ $$0P:(DE-HGF)0$$aLatuch, J.$$b3
000192666 7001_ $$0P:(DE-H253)PIP1012932$$aEvangelakis, Giorgos$$b4
000192666 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.4879903$$gVol. 115, no. 20, p. 203714 -$$n20$$p203714$$tJournal of applied physics$$v115$$x1089-7550$$y2014
000192666 8564_ $$yRestricted
000192666 8564_ $$uhttps://bib-pubdb1.desy.de/record/192666/files/PUBDB-2014-04241.pdf$$yOpenAccess
000192666 8564_ $$uhttps://bib-pubdb1.desy.de/record/192666/files/PUBDB-2014-04241.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000192666 8564_ $$uhttps://bib-pubdb1.desy.de/record/192666/files/PUBDB-2014-04241.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000192666 8564_ $$uhttps://bib-pubdb1.desy.de/record/192666/files/PUBDB-2014-04241.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000192666 909CO $$ooai:bib-pubdb1.desy.de:192666$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000192666 915__ $$0LIC:(DE-HGF)AIP-04102013$$2HGFVOC$$aAmerican Institute of Physics web posting guidelines
000192666 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000192666 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000192666 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000192666 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000192666 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000192666 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000192666 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000192666 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000192666 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000192666 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000192666 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000192666 9141_ $$y2014
000192666 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007754$$aExternes Institut$$b0$$kExtern
000192666 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007803$$aExternes Institut$$b1$$kExtern
000192666 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012932$$aExternes Institut$$b4$$kExtern
000192666 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000192666 9131_ $$0G:(DE-HGF)POF2-54G13$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$9G:(DE-H253)POF2-X1-20130405$$aDE-H253$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vDORIS III$$x0
000192666 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x0
000192666 980__ $$ajournal
000192666 980__ $$aVDB
000192666 980__ $$aUNRESTRICTED
000192666 980__ $$aFullTexts
000192666 980__ $$aI:(DE-H253)HAS-User-20120731
000192666 9801_ $$aFullTexts