001 | 192611 | ||
005 | 20250730144906.0 | ||
024 | 7 | _ | |2 doi |a 10.1007/s10870-014-0527-1 |
024 | 7 | _ | |2 ISSN |a 0099-7021 |
024 | 7 | _ | |2 ISSN |a 0277-8068 |
024 | 7 | _ | |2 ISSN |a 0308-4086 |
024 | 7 | _ | |2 ISSN |a 1074-1542 |
024 | 7 | _ | |2 ISSN |a 1572-8854 |
024 | 7 | _ | |a WOS:000340101500001 |2 WOS |
024 | 7 | _ | |a openalex:W2072629479 |2 openalex |
037 | _ | _ | |a PUBDB-2014-04193 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |0 P:(DE-H253)PIP1013208 |a Noohinejad, Leila |b 0 |
245 | _ | _ | |a Ferroelectricity of Phenazine--Chloranilic Acid at T = 100 K |
260 | _ | _ | |a Dordrecht [u.a.] |b Springer Science + Business Media B.V |c 2014 |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1416896880_28120 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
520 | _ | _ | |a The co-crystal of phenazine (Phz) and chloroanilic acid (H2ca) is ferroelectric below the temperature TIc=253 K (FE-I phase). Upon cooling, two more phase transitions involve a further reduction of symmetry, until Phz-H 2 ca is triclinic in the second ferroelectric phase (FE-II phase) stable below TIIc= 137 K. Ferroelectricity in all low-temperature phases is believed to be related to partial proton transfer within the hydrogen bonds between the molecules Phz and H2ca . Here we present the crystal structure of the FE-II phase at T=100 K. Experimental positions of hydrogen atoms indicate that ferroelectricity is mainly governed by half of the hydrogen-bonded chains, whereby proton transfer is observed within one of the two hydrogen bonds in which each molecule participates. A simple point charge model quantitatively reproduces the polarisation of this material. However, a possible contribution to the polarisation is proposed of the O–H ⋯ N hydrogen bonds of the second half of the mixed chains, which show elongated O–H bonds similar to those in the FE-I phase. The twofold superstructure with P1 symmetry was successfully solved as commensurately modulated structure employing the monoclinic superspace group P21(1/2σ21/2)0 . The latter shows that the distortions at low temperatures follow a single normal mode of the space group P21 of the FE-I phase, and it thus explains that the direction of the polarisation remains close to the monoclinic axis, despite the lowering towards triclinic symmetry |
536 | _ | _ | |0 G:(DE-H253)POF2-F1-20130405 |f POF II |x 0 |c POF2-54G13 |a DORIS Beamline F1 (POF2-54G13) |
588 | _ | _ | |a Dataset connected to CrossRef, bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-H253)D-F1-20150101 |1 EXP:(DE-H253)DORISIII-20150101 |6 EXP:(DE-H253)D-F1-20150101 |a DORIS III |f DORIS Beamline F1 |x 0 |
700 | 1 | _ | |0 P:(DE-H253)PIP1008631 |a Mondal, Swastik |b 1 |
700 | 1 | _ | |0 P:(DE-H253)PIP1008710 |a Wölfel, Alexander |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Ali, Sk Imran |b 3 |
700 | 1 | _ | |0 P:(DE-H253)PIP1008632 |a Schönleber, Andreas |b 4 |
700 | 1 | _ | |0 P:(DE-H253)PIP1008136 |a van Smaalen, Sander |b 5 |e Corresponding Author |
773 | _ | _ | |0 PERI:(DE-600)1491232-6 |a 10.1007/s10870-014-0527-1 |g Vol. 44, no. 8, p. 387 - 393 |n 8 |p 387 - 393 |t Journal of chemical crystallography |v 44 |x 1572-8854 |y 2014 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/192611/files/PUBDB-2014-04193.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/192611/files/PUBDB-2014-04193.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/192611/files/PUBDB-2014-04193.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/192611/files/PUBDB-2014-04193.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:192611 |p VDB |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-H253)PIP1013208 |a Externes Institut |b 0 |k Extern |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-H253)PIP1008631 |a Externes Institut |b 1 |k Extern |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-H253)PIP1008710 |a Externes Institut |b 2 |k Extern |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-H253)PIP1008632 |a Externes Institut |b 4 |k Extern |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-H253)PIP1008136 |a Externes Institut |b 5 |k Extern |
913 | 2 | _ | |0 G:(DE-HGF)POF3-899 |1 G:(DE-HGF)POF3-890 |2 G:(DE-HGF)POF3-800 |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |v ohne Topic |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF2-54G13 |1 G:(DE-HGF)POF2-540 |2 G:(DE-HGF)POF2-500 |9 G:(DE-H253)POF2-F1-20130405 |b Struktur der Materie |v DORIS III |x 0 |a DE-H253 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Forschung mit Photonen, Neutronen, Ionen |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR |l DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|