% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Ackermann:172414,
author = {Ackermann, Markus and Albert, A. and Atwood, W. B. and
Baldini, L. and Ballet, J. and Barbiellini, G. and Bastieri,
D. and Bellazzini, R. and Bissaldi, E. and Blandford, R. D.
and Bloom, E. D. and Bottacini, E. and Brandt, T. J. and
Bregeon, J. and Bruel, P. and Buehler, R. and Buson, S. and
Caliandro, G. A. and Cameron, R. A. and Caragiulo, M. and
Caraveo, P. A. and Cavazzuti, E. and Cecchi, C. and Charles,
E. and Chekhtman, A. and Chiang, J. and Chiaro, G. and
Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad,
J. and Cutini, S. and D'Ammando, F. and de Angelis, A. and
de Palma, F. and Dermer, C. D. and Digel, S. W. and Venere,
L. Di and do Couto e Silva, E. and Drell, P. S. and Favuzzi,
C. and Ferrara, E. C. and Focke, W. B. and Franckowiak, A.
and Fukazawa, Y. and Funk, S. and Fusco, P. and Gargano, F.
and Gasparrini, D. and Germani, S. and Giglietto, N. and
Giordano, F. and Giroletti, M. and Godfrey, G. and
Gomez-Vargas, G. A. and Grenier, I. A. and Guiriec, S. and
Hadasch, D. and Harding, A. K. and Hays, E. and Hewitt, J.
W. and Hou, X. and Jogler, T. and Jóhannesson, G. and
Johnson, A. S. and Johnson, W. N. and Kamae, T. and Kataoka,
J. and Knödlseder, J. and Kocevski, D. and Kuss, M. and
Larsson, S. and Latronico, L. and Longo, F. and Loparco, F.
and Lovellette, M. N. and Lubrano, P. and Malyshev, D. and
Manfreda, A. and Massaro, F. and Mayer, M. and Mazziotta, M.
N. and McEnery, J. E. and Michelson, P. F. and Mitthumsiri,
W. and Mizuno, T. and Monzani, M. E. and Morselli, A. and
Moskalenko, I. V. and Murgia, S. and Nemmen, R. and Nuss, E.
and Ohsugi, T. and Omodei, N. and Orienti, M. and Orlando,
E. and Ormes, J. F. and Paneque, D. and Panetta, J. H. and
Perkins, J. S. and Pesce-Rollins, M. and Petrosian, V. and
Piron, F. and Pivato, G. and Rainò, S. and Rando, R. and
Razzano, M. and Razzaque, S. and Reimer, A. and Reimer, O.
and Sánchez-Conde, M. and Schaal, M. and Schulz, A. and
Sgrò, C. and Siskind, E. J. and Spandre, G. and Spinelli,
P. and Stawarz, Łukasz and Strong, A. W. and Suson, D. J.
and Tahara, M. and Takahashi, H. and Thayer, J. B. and
Tibaldo, L. and Tinivella, M. and Torres, D. F. and Tosti,
G. and Troja, E. and Uchiyama, Y. and Vianello, G. and
Werner, M. and Winer, B. L. and Wood, K. S. and Wood, M. and
Zaharijas, G.},
title = {{THE} {SPECTRUM} {AND} {MORPHOLOGY} {OF} {THE} {FERMI}
{BUBBLES}},
journal = {The astrophysical journal},
volume = {793},
number = {1},
issn = {1538-4357},
address = {Chicago, Ill. [u.a.]},
publisher = {Univ.11032},
reportid = {PUBDB-2014-03721, arXiv:1407.7905},
pages = {64},
year = {2014},
abstract = {The Fermi bubbles are two large structures in the gamma-ray
sky extending to 55° above and below the Galactic center.
We analyze 50 months of Fermi Large Area Telescope data
between 100 MeV and 500 GeV above 10° in Galactic latitude
to derive the spectrum and morphology of the Fermi bubbles.
We thoroughly explore the systematic uncertainties that
arise when modeling the Galactic diffuse emission through
two separate approaches. The gamma-ray spectrum is well
described by either a log parabola or a power law with an
exponential cutoff. We exclude a simple power law with more
than 7σ significance. The power law with an exponential
cutoff has an index of 1.9 ± 0.2 and a cutoff energy of 110
± 50 GeV. We find that the gamma-ray luminosity of the
bubbles is $4.4^{+2.4}_{-0.9} \times 10^{37}$ erg s–1. We
confirm a significant enhancement of gamma-ray emission in
the southeastern part of the bubbles, but we do not find
significant evidence for a jet. No significant variation of
the spectrum across the bubbles is detected. The width of
the boundary of the bubbles is estimated to be
$3.4^{+3.7}_{-2.6}$ deg. Both inverse Compton (IC) models
and hadronic models including IC emission from secondary
leptons fit the gamma-ray data well. In the IC scenario,
synchrotron emission from the same population of electrons
can also explain the WMAP and Planck microwave haze with a
magnetic field between 5 and 20 μG.},
cin = {ZEU-EXP/AT},
ddc = {520},
cid = {$I:(DE-H253)ZEU-EXP_AT-20120731$},
pnm = {523 - High-energy gamma ray astronomy (POF2-523)},
pid = {G:(DE-HGF)POF2-523},
experiment = {EXP:(DE-MLZ)NOSPEC-20140101},
typ = {PUB:(DE-HGF)29 / PUB:(DE-HGF)16},
eprint = {1407.7905},
howpublished = {arXiv:1407.7905},
archivePrefix = {arXiv},
SLACcitation = {$\%\%CITATION$ = $arXiv:1407.7905;\%\%$},
UT = {WOS:000341301700064},
doi = {10.1088/0004-637X/793/1/64},
url = {https://bib-pubdb1.desy.de/record/172414},
}