%0 Journal Article
%A Teschner, Jörg
%A Vartanov, Grigory
%T 6j Symbols for the Modular Double, Quantum Hyperbolic Geometry, and Supersymmetric Gauge Theories
%J Letters in mathematical physics
%V 104
%N 5
%@ 1573-0530
%C Dordrecht [u.a.]
%I Springer Science + Business Media B.V
%M DESY-2014-02955
%M DESY-12-035
%M arXiv:1202.4698
%P 527 - 551
%D 2014
%Z © Springer Science+Business Media Dordrecht
%X We revisit the definition of the 6j-symbols from the modular double of U_q(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories.
%K gauge field theory: supersymmetry (INSPIRE)
%K supersymmetry: 2 (INSPIRE)
%K dimension: 3 (INSPIRE)
%K geometry (INSPIRE)
%K modular (INSPIRE)
%K partition function (INSPIRE)
%K Riemann surface (INSPIRE)
%K semiclassical (INSPIRE)
%K quantization (INSPIRE)
%K moduli space (INSPIRE)
%K field theory: Liouville (INSPIRE)
%K approximation: classical (INSPIRE)
%K n-point function: 4 (INSPIRE)
%K SU(2) (INSPIRE)
%K Yang-Mills (INSPIRE)
%K Chern-Simons term (INSPIRE)
%K Clebsch-Gordan coefficients (INSPIRE)
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:000335670100002
%R 10.1007/s11005-014-0684-3
%U https://bib-pubdb1.desy.de/record/169956