000167475 001__ 167475
000167475 005__ 20250730143816.0
000167475 0247_ $$2doi$$a10.1002/jmor.20211
000167475 0247_ $$2ISSN$$a0362-2525
000167475 0247_ $$2ISSN$$a1097-4687
000167475 0247_ $$2WOS$$aWOS:000329511600003
000167475 0247_ $$2pmid$$apmid:24136411
000167475 0247_ $$2altmetric$$aaltmetric:1841552
000167475 0247_ $$2openalex$$aopenalex:W1588008353
000167475 037__ $$aDESY-2014-01817
000167475 082__ $$a570
000167475 1001_ $$0P:(DE-H253)PIP1008518$$aKleinteich, Thomas$$b0$$eCorresponding author
000167475 245__ $$aAnatomy, function, and evolution of jaw and hyobranchial muscles in cryptobranchoid salamander larvae
000167475 260__ $$aNew York, NY$$bWiley-Liss$$c2014
000167475 3367_ $$00$$2EndNote$$aJournal Article
000167475 3367_ $$2DRIVER$$aarticle
000167475 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1407403284_19783
000167475 3367_ $$2BibTeX$$aARTICLE
000167475 520__ $$aLarval salamanders (Lissamphibia: Caudata) are known to be effective suction feeders in their aquatic environments, although they will eventually transform into terrestrial tongue feeding adults during metamorphosis. Early tetrapods may have had a similar biphasic life cycle and this makes larval salamanders a particularly interesting model to study the anatomy, function, development, and evolution of the feeding apparatus in terrestrial vertebrates. Here, we provide a description of the muscles that are involved in the feeding strike in salamander larvae of the Hynobiidae and compare them to larvae of the paedomorphic Cryptobranchidae. We provide a functional and evolutionary interpretation for the observed muscle characters. The cranial muscles in larvae from species of the Hynobiidae and Cryptobranchidae are generally very similar. Most notable are the differences in the presence of the m. hyomandibularis, a muscle that connects the hyobranchial apparatus with the lower jaw. We found this muscle only in Onychodactylus japonicus (Hynobiidae) but not in other hynobiid or cryptobranchid salamanders. Interestingly, the m. hyomandibularis in O. japonicus originates from the ceratobranchial I and not the ceratohyal, and thus exhibits what was previously assumed to be the derived condition. Finally, we applied a biomechanical model to simulate suction feeding in larval salamanders. We provide evidence that a flattened shape of the hyobranchial apparatus in its resting position is beneficial for a fast and successful suction feeding strike.
000167475 536__ $$0G:(DE-H253)POF2-W2-20130405$$aDORIS Beamline W2 (POF2-54G13)$$cPOF2-54G13$$fPOF II$$x0
000167475 588__ $$aDataset connected to CrossRef, bib-pubdb1.desy.de
000167475 693__ $$0EXP:(DE-H253)D-W2-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-W2-20150101$$aDORIS III$$fDORIS Beamline W2$$x0
000167475 7001_ $$0P:(DE-H253)PIP1005953$$aHerzen, Julia$$b1
000167475 7001_ $$0P:(DE-H253)PIP1002967$$aBeckmann, Felix$$b2
000167475 7001_ $$0P:(DE-HGF)0$$aMatsui, Masafumi$$b3
000167475 7001_ $$0P:(DE-H253)PIP1009851$$aHaas, Alexander$$b4
000167475 773__ $$0PERI:(DE-600)1479991-1$$a10.1002/jmor.20211$$gVol. 275, no. 2, p. 230 - 246$$n2$$p230 - 246$$tJournal of morphology$$v275$$x0362-2525$$y2014
000167475 8564_ $$uhttps://bib-pubdb1.desy.de/record/167475/files/DESY-2014-01817.pdf$$yRestricted
000167475 8564_ $$uhttps://bib-pubdb1.desy.de/record/167475/files/DESY-2014-01817.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000167475 8564_ $$uhttps://bib-pubdb1.desy.de/record/167475/files/DESY-2014-01817.jpg?subformat=icon-180$$xicon-180$$yRestricted
000167475 8564_ $$uhttps://bib-pubdb1.desy.de/record/167475/files/DESY-2014-01817.jpg?subformat=icon-640$$xicon-640$$yRestricted
000167475 909CO $$ooai:bib-pubdb1.desy.de:167475$$pVDB
000167475 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008518$$aExternes Institut$$b0$$kExtern
000167475 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1005953$$aExternes Institut$$b1$$kExtern
000167475 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1002967$$aExternes Institut$$b2$$kExtern
000167475 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009851$$aExternes Institut$$b4$$kExtern
000167475 9131_ $$0G:(DE-HGF)POF2-54G13$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$9G:(DE-H253)POF2-W2-20130405$$aDE-H253$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vDORIS III$$x0
000167475 9141_ $$y2014
000167475 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000167475 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000167475 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000167475 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000167475 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000167475 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000167475 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000167475 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000167475 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000167475 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000167475 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000167475 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000167475 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000167475 9201_ $$0I:(DE-H253)HZG-20120731$$kHZG$$lZentrum für Material- und Küstenforschung$$x0
000167475 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR$$lDOOR-User$$x1
000167475 980__ $$ajournal
000167475 980__ $$aVDB
000167475 980__ $$aI:(DE-H253)HZG-20120731
000167475 980__ $$aI:(DE-H253)HAS-User-20120731
000167475 980__ $$aUNRESTRICTED